共查询到18条相似文献,搜索用时 46 毫秒
1.
基于多特征融合的尺度自适应KCF目标跟踪算法 总被引:2,自引:0,他引:2
首先,对核相关滤波(KCF)目标跟踪算法进行了详细推导;然后,针对KCF算法提取单一特征,不能很好地表达目标的外观模型,提出将多种特征融合的方法,增加外观模型的可区分性.同时针对KCF算法不能自适应尺度变化的问题,引入一种尺度自适应变化方法.还对于KCF算法的固定更新率在目标被遮挡的情况下会学习到错误信息的问题,提出一种在线模型更新因子的方法;最后,通过实验对比结果表明,本文提出的算法跟踪精度更高,且对目标尺度发生较大变化和遮挡情况下的跟踪具有较强的鲁棒性. 相似文献
2.
外观、尺度变化是行人跟踪的难点,解决行人多尺度跟踪问题是增强算法实用性的关键因素.在KCF(kernel correlation filter)算法的基础上,本文采用多个相关滤波器(如头部、臀部)辅助身体躯干滤波器的匹配跟踪.通过获得图像帧(除第一帧外)与初始帧的行人头部和臀部之间的距离变化率来缩放搜索面积,解决目标定位不准确和时间浪费的问题;通过调整目标框的尺寸,解决目标模板逐渐包括背景特征或者逐渐被局部特征取代的问题.在VOT2016的18个有明显尺度变化的行人场景视频序列上进行了测试,实验结果表明所提算法具有更高的跟踪准确率. 相似文献
3.
提出一种基于核相关滤波的尺度和旋转自适应跟踪算法.首先,利用核相关滤波确定目标的中心位置;然后,使用特征点匹配的方式估计目标的尺度变化和旋转角度.在特征点匹配过程中,使用前、后两次光流匹配消除不稳定特征点;计算特征点对的权重分布,从而估计出目标的最佳尺度和角度;判断当前目标是否受到遮挡,进而使用更合理的方式更新特征点集和目标模型,进一步提高算法的鲁棒性.实验结果表明:文中算法不仅能在一定程度上处理目标外观变化问题,而且跟踪的实时性较好. 相似文献
4.
针对目标跟踪过程中由于遮挡导致的算法性能下降的问题,在分析和研究核相关滤波算法的基础上提出了一种尺度自适应的分块跟踪策略.首先从目标中心划分子块,使用融合梯度特征和颜色特征的局部核相关滤波器单独跟踪每个目标子块,并结合目标子块与整体间的位置约束关系得到目标中心位置的粗略估计,然后由全局滤波器用作初始估计以确定目标中心的... 相似文献
5.
对于经典TLD(跟踪-学习-检测)跟踪算法,在目标受到遮挡、光照、干扰、旋转和尺度变化等问题时,会导致算法的跟踪精度和速度降低,计算的复杂度较高,实时性差。针对以上问题,本文提出了一种改进的TLD目标跟踪算法。首先针对检测模块中计算复杂度高的问题,将HOG-SVM结合替换原TLD算法中的2bitBP特征和集成分类器;再针对原算法中跟踪精度低的问题,将KCF跟踪算法替换中值光流法;在HOG-SVM+KCF跟踪算法的基础上,对滑动窗口法进行改进,解决原算法中实时性差的问题。实验表明,改进后的跟踪算法,在背景环境变化的情况下,跟踪精度和速度都有提高,实时性加强。 相似文献
6.
雾霾天气进行目标跟踪时,会出现拍摄到的图像对比度和可见度低的情况,已有的跟踪算法会因为图像特征不明显而出现跟踪漂移甚至导致跟踪失败.针对这一问题,提出一种将核相关滤波与暗通道去雾算法相结合的雾天视频跟踪算法,首先根据目标区域暗通道图的平均灰度值判断是否需要去雾,对需要去雾的图像进行暗通道去雾处理;然后通过核相关滤波对目标进行定位和跟踪;最后根据跟踪结果用去雾后的样本更新分类器.实验结果表明,该算法在大雾情况下可以取得很好的跟踪结果. 相似文献
7.
8.
何佳 《科技情报开发与经济》2010,20(13):93-95
粒子滤波算法中通常采用先验转移概率代替重要性函数,由此重要性密度函数对后验函数的偏差将增大。将小波去噪应用到粒子滤波过程中,降低了偏差,提高了粒子算法的滤波精度,并将该算法应用到目标跟踪的过程中,通过仿真证实该方法能够提高粒子滤波精度。 相似文献
9.
针对目标跟踪中出现的快速运动、尺度变化、遮挡等问题,提出基于遮挡检测的核相关自适应目标跟踪。该方法首先,利用核函数对正则化最小二乘分类器求解获得核相关滤波器,其次,利用核相关滤波器计算特征响应图,同时学习一维尺度滤波器对尺度进行估计,最后,通过响应图的最大值和振荡程度来判断目标是否被遮挡,在未受到遮挡的情况下,更新学习目标的外观模型和尺度模型,实现自适应目标跟踪。在公开的标准数据集上的实验结果表明,相比原始核相关滤波算法,平均中心位置误差降低15%,平均重叠率提高10%,且在目标尺度发生变化、遮挡、光照变化、快速运动等复杂场景下有较强的鲁棒性、适应性。 相似文献
10.
海上目标感知的准确性和实时性是实现船舶智能航行的前提和基础.为了满足以上要求,将有效卷积算子(ECO)引入海上船舶目标跟踪中.该算法以相关滤波为基础,响应最大值之处为目标船舶中心所在位置.获得中心位置之后,采用尺度滤波方法估计出船舶目标的最佳尺度,从而完成对目标当前帧的跟踪.利用因式分解卷积的方式分解卷积,降低数据维度,减少计算时间;采用高斯混合模型将样本分成不同类别,降低训练集样本冗余度;采用稀疏更新策略更新样本模型,防止过拟合问题.选取海洋环境下船舶不同运动场景作为实验样本,与几种常用跟踪算法对比,验证了ECO算法在海上船舶目标跟踪上的准确性和实时性. 相似文献
11.
机动目标跟踪中一种改进的自适应卡尔曼滤波算法 总被引:1,自引:0,他引:1
针对“当前”统计模型中预先设置机动频率和加速度极限值造成对目标跟踪精度不高的问题,提出一种新的参数自适应算法.该算法利用目标前后2个时刻的加速度均值代替“当前”统计模型中只利用前一时刻的加速度值作为当前时刻的加速度均值,推导出了机动频率自适应,再利用加速度方差与加速度变化量之间存在的正比线性关系,推导出了加速度方差自适应,避免了由于参数设置不合理而造成的跟踪误差.理论分析和仿真结果表明,改进算法有效提高了目标跟踪精度,仿真结果验证了改进算法的有效性. 相似文献
12.
多车辆目标跟踪时间主要花费在车辆检测模块和对每个车辆表观特征提取模块,一般情况下,车辆检测和车辆表观特征提取是在不同的神经网络中进行的,且一张图中的车辆目标越多,对车辆表观特征提取耗费时间的也越多,推理时间也相应变长。针对这一问题,基于经典的Tracking-By-Detection模式,提出一种改进的YOLO模型:在YOLO网络中添加ReID特征识别模块,使YOLO在输出目标位置信息的同时输出目标特征信息,以提高算法的跟踪速度。针对车辆间彼此覆盖的情况,提出一种基于动态IOU阈值的非极大抑制算法,以提高算法的跟踪精度。最后将YOLO输出的信息进行数据匹配,从而实现多目标跟踪。在UA-DETRAC数据集上验证改进模型的有效性,实验结果表明,将YOLOv5网络进行改进后运用在目标跟踪算法中,相对于经典的YOLO+DeepSORT跟踪模型,在车辆密集的情景下平均推理时间减少了17%;在改进后的网络上添加动态IOU阈值非极大抑制,跟踪精度提高了3.9个百分点。改进后的模型有较好的实时性与跟踪准确率。 相似文献
13.
14.
直接对三坐标航管一次雷达点迹录取器中录取到的点迹进行航迹起始、跟踪等处理后,会形成大量虚警,运算量大。进行目标跟踪时,候选点迹集合数量庞大是造成目标跟踪过程运算量大的主要原因。文中基于动态自适应DBSCAN聚类算法,结合经典卡尔曼滤波跟踪算法,提出了动态自适应DBSCAN聚类跟踪混合算法,来减少候选点迹集合数量。实验结果证明,本文提出的算法实现了无效点迹数的减少、航迹质量的提高以及运算时间的下降。通过动态自适应DBSCAN聚类跟踪混合算法,能迅速跟踪到三坐标航管一次雷达探测到的目标并形成目标航迹,可以及时发现黑飞目标,将对正常民航飞机飞行的干扰降到最低。 相似文献
15.
16.
17.
针对纯方位被动目标跟踪中粒子滤波算法固有的计算复杂性问题,提出了一种基于小波变换的粒子滤波算法(WMPF).对粒子权重进行小波多分辨率分解,通过设定阈值对高通部分的粒子权重进行滤波,再根据重构后的粒子权重去掉重复粒子,生成新的粒子集来近似后验概率密度函数,从而在保证滤波精度的同时大量减少粒子数,提高粒子滤波的计算效率.将WMPF算法与标准粒子滤波算法应用于具有非线性非高斯特点的纯方位目标跟踪问题,仿真结果表明,WMPF算法的跟踪精度与标准粒子滤波算法相当,计算效率却远高于标准粒子滤波算法,增强了跟踪的实时性,并且该算法有望进一步扩展粒子滤波的应用范围. 相似文献
18.
针对火箭目标跟踪问题,提出了一种基于改进Mean-shift算法的火箭目标跟踪算法。为克服传统Mean-shift算法难以对快速运动的火箭目标进行跟踪的问题,以及在跟踪过程中的跟踪误差累积问题。采用3帧差分法检测出火箭目标的大概位置,然后在此基础上使用Mean-shift算法实现对火箭目标的精确跟踪。仿真实验表明所提算法能够有效的实现火箭目标的跟踪,并能很好的解决跟踪过程中的跟踪误差累积问题。 相似文献