共查询到20条相似文献,搜索用时 11 毫秒
1.
提出了一种基于S变换、加窗插值快速傅里叶变换(FFT)和概率神经网络(PNN)的电能质量扰动检测和分类方法.应用S变换和加窗插值FFT对电能质量多扰动信号进行时频分析,获取信号的特征量.通过训练信号集上获得的特征量,训练了一个概率神经网络用于扰动分类.训练好的网络在测试信号集上的测试结果表明,对正常电压和常见的电能质量扰动,该方法具有较高的分类准确率,在训练样本数较少、噪声影响大和多扰动信号并存时仍能取得较好的分类效果. 相似文献
2.
提出了基于S变换和弹性BP神经网络结构(RPROP)的电能质量扰动自动分类方法。通过S变换对电能质量扰动信号进行时频分析,有效实现对各种扰动信号时频特征量的输出,并确定特征量的最优组合来增加弹性BP神经网络分类的精度。同时研究了在不同噪声条件下弹性BP神经网络分类的敏感度。测试结果显示,该方法能有效地对电能质量扰动信号进行分类。 相似文献
3.
杨汉生 《南京理工大学学报(自然科学版)》2013,(1):65-69
针对经验模态分解过程中容易过度筛选的问题,该文改进了筛选停止准则,对Hilbert-Huang变换进行了改进,并将改进Hilbert-Huang变换方法应用于暂态电能质量扰动信号的检测及时频分析中。该方法在对暂态电能质量扰动信号进行经验模态分解得到固有模态函数后,再进行希尔伯特变换,可以定量、准确地刻画扰动信号的时间、频率和幅值信息。实验结果表明:该方法可以实时准确检测扰动的起止时刻、持续时间和扰动幅度,适用于暂态电能质量扰动的监测系统。 相似文献
4.
针对暂态电能质量检测中信号扰动的准确定位和快速类型识别的需求,提出了一种提升小波和Hilbert变换融合的暂态电能质量检测方法.该方法首先利用提升小波在检测信号扰动方面的优越性,通过一层提升小波变换得到信号的近似成分A1与细节成分D1,然后运用Hilbert变换计算出两种成分的瞬时幅值,根据幅值特性实现对信号扰动时刻的准确定位和对扰动类型的快速识别.仿真与实验表明,所提出的检测方法对扰动时刻定位准确率达到95.7%,对扰动类型识别准确率达到91.8%,与目前使用分类器的方法相比,所提方法具有无需训练、适应性强、实时性好等特点. 相似文献
5.
提出一种新颖的基于决策树方法的电能质量扰动自动分类方法.该方法首先对采集到的扰动信号进行小波多分辨率分解,扰动信号在每个小波分解尺度的能量分布构成一个特征向量;然后利用CART决策树算法从这些特征向量构成的训练样本中自动提取相应的分类规则,得到决策树分类模型,并将该模型应用到电能质量扰动测试数据中.仿真结果表明所提电能质量扰动数据分类挖掘方法的有效性和鲁棒性. 相似文献
6.
针对电能质量扰动的检测和分类问题,提出了一种新的基于广义S变换和决策树的电能质量扰动分类方法.首先提出基于FFT的自适应调整调节因子取值的方法,再利用广义S变换对常见的几种电能质量扰动信号进行时频分析,并提取特征形成判决规则,最后生成用于对电能质量扰动进行分类的决策树分类算法.仿真实验结果表明,该算法能够实现电能质量扰动的自动分类,且分类正确率很高. 相似文献
7.
提出了一种快速实现离散正交S变换的方法;并将此方法应用于检测电能质量扰动信号的起止时刻。离散正交S变换(DOST)是一种冗余度小的变换,然而利用基函数方法计算DOST的算法复杂度相对较高。为了降低算法复杂度、提高计算效率,根据DOST系数矩阵的特点,先对其进行分块处理,再利用FFT的优势,得到快速离散正交S变换(FDOST);并给出其计算复杂度的证明。将得到的FDOST系数按时频规律排列成矩阵,通过对矩阵的分析,检测扰动信号起止时刻。通过对实验数据和真实故障录波数据的分析,验证了算法的有效性和实用性。 相似文献
8.
针对当前基于S变换的电能质量方法计算开销大、不能实时识别电能质量扰动的问题,提出利用快速S变换与最小二乘支持向量机相结合的识别电能质量干扰新方法.该方法从快速S变换得到的一维向量中提取各频率段模系数的标准偏差、最大模系数及额定频率对应的模系数作为特征向量,利用最小二乘支持向量机对电压骤升、电压骤降、电压中断、暂态脉冲、暂态振荡、谐波等几种电能质量干扰进行分类和识别.研究结果表明:与传统的基于S变换的电能质量方法相比,该方法在2个方面节省了时间,一是减少了提取特征量所用的时间,二是由于特征向量数据较少,采用支持向量机样本训练时间减少;特剐是当电压扰动信号持续时间越长时节省效率越高,在同样准确性下,对于长度为1 024点的扰动信号,节省了约99%的时间;除此之外,该方法对信号分类的正确率可达98%,同时还具有较高的抗干扰能力. 相似文献
9.
杨汉生 《南京理工大学学报(自然科学版)》2011,35(1)
为了进一步提高暂态电能质量扰动检测及定位的准确率,该文分析了暂态电能质量扰动的相关性,选择预测和更新算子,实现对扰动信号的自适应检测;利用MATLAB对电压骤升、电压骤降、电压瞬时中断、脉冲暂态和振荡暂态等暂态电能质量问题进行仿真研究,仿真结果表明:该方法能快速检测出上述5种暂态电能质量扰动.研究结果为电能质量分析仪器设计提供了理论支持. 相似文献
10.
针对暂态电能质量复合扰动的问题,提出了基于希尔伯特-黄变换和粒子群优化多分类支持向量机的暂态电能质量复合扰动检测分类的方法。利用希尔伯特-黄变换提取分类所需的特征向量作为训练数据输入粒子群参数优化的支持向量机,实现了对多种复合的暂态电能质量扰动问题分类。从仿真结果可以看出,该方法可以对常见的复合暂态电能质量扰动信号进行检测和分类,且结果精确。 相似文献
11.
针对短时电能质量变化和暂态扰动现象的不同特点,建立常见电能质量扰动的数学模型。运用小波变换对暂态电能质量扰动现象的内在特征进行提取,将扰动电压变化率绝对值、扰动能量变化量作为暂态电能质量扰动的特征向量。根据支持向量机的基本原理,给出一种推广误差上界估计判据,利用此判据进行最优核参数的自动选取,利用支持向量机进行训练和测试。结果表明,优化核参数的支持向量机分类器准确率高,实时性好。 相似文献
12.
多小波变换在电能质量扰动检测与分类中的应用 总被引:1,自引:0,他引:1
分析了电能质量扰动产生的原因,针对几类常见的电能质量扰动问题,探讨了多小波变换在电能质量扰动的检测与分类中应用的理论依据,并通过大量的仿真工作,对多小波与传统小波的电能质量扰动检测与分类效果进行了分析比较,研究结果表明:多小波比传统小波具有更好的电能质量扰动检测与分类效果. 相似文献
13.
基于小波变换的电能质量扰动测量方法 总被引:2,自引:1,他引:2
对电压幅值变化现象的定量检测问题进行了研究.定义了基于两个实值小波归一变换的幅值及调整幅值的概念.证明了只要这两个实值小波函数一个为偶函数、一个为奇函数并满足一定的条件,则基于这两个实值小波归一变换的调整幅值在非故障区间内的值恰好等于1,而在故障区间内的值恰好等于故障区间的电压幅值与非故障区间的电压幅值之比。最后选用两个实值小波函数,应用基于这两个实值小波归一变换的调整幅值对电压波形畸变进行了检测,模拟结果显示该幅值检测图不仅能准确定位故障发生和终止时刻。而且可精确地定量显示出电压变化的幅度。 相似文献
14.
电能质量扰动现象的准确分类是电能质量领域的热门课题.提出一种基于复阻抗和支持向量机的电能质量扰动分类方法.该方法首先从UCI(University of California,Irvine)数据库中分别提取出各电能质量扰动现象(电压暂降、电压暂升、电压中断、电压振荡、电压脉冲)的实际数据,通过Hilbert变换把扰动电压信号和扰动电流信号转换为相量形式,在此基础上得到复阻抗.接着通过复阻抗提取信号特征,组成特征向量,然后应用支持向量机分类器进行训练、测试和分类.最终对UCI数据库中大量实际扰动数据进行分类,分类取得了良好效果,此效果表明该方法具有一定的应用价值. 相似文献
15.
KNN算法是一种思想简单且容易实现的分类算法,但在训练集较大以及特征属性较多时候,其效率低、时间开销大.针对这一问题,论文提出了基于模糊C-means的改进型KNN分类算法,该算法在传统的KNN分类算法基础上引入了模糊C-means理论,通过对样本数据进行聚类处理,用形成的子簇代替该子簇所有的样本集,以减少训练集的数量,从而减少KNN分类过程的工作量、提高分类效率,使KNN算法更好地应用于数据挖掘.通过理论分析和实验结果表明,论文所提算法在面对较大数据时能有效提高算法的效率和精确性,满足处理数据的需求. 相似文献
16.
针对传统BP算法采用梯度下降算法存在的易陷入局部极小、收敛速度慢等缺点,本文提出了一种基于小波变换和PSO-BP神经网络的电能质量扰动分类方法。用PSCAD/EMTDC仿真几种典型的电能质量扰动,并利用小波变换进行多尺度分解,得到各尺度上信号的能量特征,输入PSO-BP神经网络,实现扰动的分类。仿真结果表明该方法较BP网络收敛迅速,容易达到训练要求,同时该方法具有分类速度快,精确度较高等优点. 相似文献
17.
全面综述了特征提取方法在电能质量扰动识别中的应用。将电能质量特征提取方法划分为基于时频与非时频两种方法,重点对基于非时频方法的dq0变换法、FFT变换和基于时频分析方法的小波变换、S变换在电能质量扰动识别特征提取中的应用加以讨论,并对比分析了各种方法的利弊,对进一步研究的问题及今后的主要研究方向进行了展望。 相似文献
18.
提出一种新的基于瞬时无功功率理论和小波-神经网络技术对电能质量进行辨识的方法。首先对各种电能质量信号进行时域和幅值分析,将在幅值上有显著特征的短期电能质量扰动信号识别出来;再对其余的信号进行小波变换,提取与信号频域相关的特征量来表征不同电能质量信号。将这些特征量作为神经网络(ANN)的输入可以实现电能质量的辨识。计算结果表明了该方法的有效性和准确性。 相似文献
19.
为了降低电能质量复合扰动(CPQDs)数据的标注成本,利用混合策略的主动学习方法与拉普拉斯极限学习机来识别电力配电网络中的CPQDs。提出将不同的主动学习采样策略进行混合,选择最富含信息和最具有代表性的CPQDs数据进行标记。在主动学习过程中利用对数函数自适应调整不同策略权重。为了提高分类器的性能,在监督学习和无监督学习的框架下将拉普拉斯流形正则化并嵌入到极限学习机中。将所提出的架构与主流的主动学习算法在代码合成以及硬件生成的数据集上进行了比较,结果显示所提出的方法拥有更好的性能。
相似文献20.
电能质量暂态扰动会给敏感负荷带来重大损失.采用小波变换的多分辨率分析思想,利用分形理论从图形模式辨识的角度出发对电能质量暂态扰动进行分类、辨析.首先采用计算简单的计盒维数对波形图像进行初步分析,随后根据盒的分布密度进行分段划分,将含暂态扰动的信息段从波形中提取出来,并根据多分辨率分析的思想对重点波形段进行分形及小波分析提取信号特征.仿真结果证明,该方法对电能质量扰动的暂态识别具有较好的适应性及稳健性,可以在噪声环境下识别小幅度的电能质量扰动,具有检测速度快、可并发执行的特点. 相似文献