首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The BAG (Bcl-2 associated athanogene) family is a multifunctional group of proteins that perform diverse functions ranging from apoptosis to tumorigenesis. An evolutionarily conserved group, these proteins are distinguished by a common conserved region known as the BAG domain. BAG genes have been found in yeasts, plants, and animals, and are believed to function as adapter proteins forming complexes with signaling molecules and molecular chaperones. In humans, a role for BAG proteins has been suggested in carcinogenesis, HIV infection, and Parkinson’s disease. These proteins are therefore potential therapeutic targets, and their expression in cells may serve as a predictive tool for such diseases. In plants, the Arabidopsis thaliana genome contains seven homologs of the BAG family, including four with domain organization similar to animal BAGs. Three members contain a calmodulin-binding domain possibly reflecting differences between plant and animal programmed cell death. This review summarizes current understanding of BAG proteins in both animals and plants. Received 21 November 2007; received after revision 17 December 2007; accepted 2 January 2008  相似文献   

3.
Gelsolin superfamily proteins: key regulators of cellular functions   总被引:10,自引:0,他引:10  
Cytoskeletal rearrangement occurs in a variety of cellular processes and involves a wide spectrum of proteins. Among these, the gelsolin superfamily proteins control actin organization by severing filaments, capping filament ends and nucleating actin assembly [1]. Gelsolin is the founding member of this family, which now contains at least another six members: villin, adseverin, capG, advillin, supervillin and flightless I. In addition to their respective role in actin filament remodeling, these proteins have some specific and apparently non-overlapping particular roles in several cellular processes, including cell motility, control of apoptosis and regulation of phagocytosis (summarized in table 1). Evidence suggests that proteins belonging to the gelsolin superfamily may be involved in other processes, including gene expression regulation. This review will focus on some of the known functions of the gelsolin superfamily proteins, thus providing a basis for reflection on other possible and as yet incompletely understood roles for these proteins.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) is a secreted protein of the neurotrophin family that regulates brain development, synaptogenesis, memory and learning, as well as development of peripheral organs, such as angiogenesis in the heart and postnatal growth and repair of skeletal muscle. However, while precise regulation of BDNF levels is an important determinant in defining the biological outcome, the role of microRNAs (miRs) in modulating BDNF expression has not been extensively analyzed. Using in silico approaches, reporter systems, and analysis of endogenous BDNF, we show that miR-1, miR-10b, miR-155, and miR-191 directly repress BDNF through binding to their predicted sites in BDNF 3′UTR. We find that the overexpression of miR-1 and miR-10b suppresses endogenous BDNF protein levels and that silencing endogenous miR-10b increases BDNF mRNA and protein levels. Furthermore, we show that miR-1/206 binding sites within BDNF 3′UTR are used in differentiated myotubes but not in undifferentiated myoblasts. Finally, our data from two cell lines suggest that endogenous miR-1/206 and miR-10 family miRs act cooperatively in suppressing BDNF through their predicted sites in BDNF 3′UTR. In conclusion, our results highlight miR-1, miR-10b, miR-155, and miR-191 as novel regulators of BDNF long and short 3′UTR isoforms, supporting future research in different physiological and pathological contexts.  相似文献   

5.
6.
The highly conserved AAA ATPase Cdc48/p97 acts on ubiquitylated substrate proteins in cellular processes as diverse as the fusion of homotypic membranes and the degradation of misfolded proteins. The 'Ubiquitin regulatory X' (UBX) domain-containing proteins constitute the so far largest family of Cdc48/p97 cofactors. UBX proteins are involved in substrate recruitment to Cdc48/p97 and in the temporal and spatial regulation of its activity. In combination with UBX-like proteins and other cofactors, they can assemble into a large variety of Cdc48/p97-cofactor complexes possessing distinct cellular functions. This review gives an overview of the different subfamilies of UBX proteins and their functions, and discusses general principles of Cdc48/p97 regulation by these cofactors.  相似文献   

7.
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.  相似文献   

8.
H Underwood 《Experientia》1990,46(1):120-128
The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a 'multioscillator' circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

9.
The Fox-1 family of RNA-binding proteins are evolutionarily conserved regulators of tissue-specific alternative splicing in metazoans. The Fox-1 family specifically recognizes the (U)GCAUG stretch in regulated exons or in flanking introns, and either promotes or represses target exons. Recent unbiased bioinformatics analyses of alternatively spliced exons and comparison of various vertebrate genomes identified the (U)GCAUG stretch as a highly conserved and widely distributed element enriched in intronic regions surrounding exons with altered inclusion in muscle, heart, and brain, consistent with specific expression of Fox-1 and Fox-2 in these tissues. Global identification of Fox-2 target RNAs in living cells revealed that many of the Fox-2 target genes themselves encode splicing regulators. Further systematic elucidation of target genes of the Fox-1 family and other splicing regulators in various tissues will lead to a comprehensive understanding of splicing regulatory networks.  相似文献   

10.
11.
Binding of aflatoxins B1 and G1 to human serum proteins   总被引:1,自引:0,他引:1  
R D Wei  S S Lee 《Experientia》1971,27(4):458-460
  相似文献   

12.
Zusammenfassung In vitro Experimente mit14C-markiertem, gereinigtem Aflatoxin zur Untersuchung der Bindung von Aflatoxin B1 und G1 an verschiedene Serumproteine ergaben, dass Aflatoxin B1 hauptsächlich mit-Globulin, G1 dagegen vorwiegend mit Albumin bindet.

This work was supported by part by a grant from the China Medical Board of New York, Inc., and was performed during one of us (S.S.L.) received a class C. research award from the National Science Council, Republic of China.  相似文献   

13.
Two small populations of inner French Guiana were investigated for red cell enzymes and serum proteins. Rare variants were found in four systems (AK1, PGM1, PGM2, Tf). Similarities between some of these variants and those found in other Amerindian populations indicate that these genetic markers may be valuable in studies of Amerindians. A mutation rate has been estimated from the results.  相似文献   

14.
15.
Neural regulators of innate immune responses and inflammation   总被引:9,自引:0,他引:9  
The nervous system regulates immune function and inflammation. Experimental evidence shows an important role of the autonomic nervous system in the bidirectional communication between the brain and the immune system, underlying the ability of the brain to monitor immune status and control inflammation. Here we review the involvement of the autonomic nervous system in regulating inflammation, with a focus on the vagus nerve. The clinical implications of the recently discovered anti-inflammatory role of the efferent vagus nerve are also discussed.Received 8 March 2004; received after revision 26 April 2004; accepted 29 April 2004  相似文献   

16.
Three classes of C2H2 zinc finger proteins   总被引:13,自引:0,他引:13  
C2H2 zinc finger proteins probably comprise the largest family of regulatory proteins in mammals. Most zinc fingers bind to a cognate DNA. In addition to DNA, many of the proteins also bind to RNA or protein, and some bind to RNA only. The binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. C2H2 zinc finger proteins contain from 1 to more than 30 figures. Based on the number and the pattern of the fingers, most of the proteins can be classified into one of three groups: triple-C2H2, multiple-adjacent-C2H2, and separated-paired-C2H2 finger proteins. In contrast to proteins with triple-C2H2 fingers, proteins with multiple-adjacent-C2H2 fingers can bind multiple, different ligands. Proteins with a number of separated-paired fingers bind to the target by means of only a single pair.  相似文献   

17.
Recent genetic and technological advances have determined a role for chromatin structure in neurodevelopment. In particular, compounding evidence has established roles for CTCF and cohesin, two elements that are central in the establishment of chromatin structure, in proper neurodevelopment and in regulation of behavior. Genetic aberrations in CTCF, and in subunits of the cohesin complex, have been associated with neurodevelopmental disorders in human genetic studies, and subsequent animal studies have established definitive, although sometime opposing roles, for these factors in neurodevelopment and behavior. Considering the centrality of these factors in cellular processes in general, the mechanisms through which dysregulation of CTCF and cohesin leads specifically to neurological phenotypes is intriguing, although poorly understood. The connection between CTCF, cohesin, chromatin structure, and behavior is likely to be one of the next frontiers in our understanding of the development of behavior in general, and neurodevelopmental disorders in particular.  相似文献   

18.
19.
The different expression patterns of genes for uncoupling proteins (UCPs) 1, 2 and 3 (ucp1, ucp2 and ucp3) were studied in interscapular brown adipose tissue (BAT) and in four white adipose tissue (WAT) depots (epididymal, inguinal, mesenteric and retroperitoneal) in male rats of different ages (18 days-12 months). UCP mRNA expression levels were determined by Northern blotting. In BAT, there were high levels of expression of UCP1 and UCP3 mRNA, but no detectable levels of UCP2 mRNA. Both ucp1 and ucp3 followed a similar expression pattern with age, with high levels in suckling rats which decreased to 50% or less in rats just under 2 months old, declining thereafter until 5 months and then recovering with age. However, an additional peak of expression was observed for ucp3 at the age of 3 months. In WAT, ucp1 expression was rare: occasional expression was found for UCP1 mRNA in the retroperitoneal depot in suckling rats and in the epididymal and inguinal depots in suckling and mature adult rats. ucp2 and ucp3 had different developmental expression patterns, but these were similar for each gene in the different depots studied. UCP3 mRNA was highly expressed in rats soon after birth, it decreased until 3 months, and increased thereafter, except for the mesenteric WAT where ucp3 expression decreased until 7 months before recovering. The fact that changes with age of both ucp1 and ucp3 expression have a similar profile in BAT, which is also similar to the ucp3 and also ucp1 profiles in some WAT depots, might reflect a common regulatory pattern for the expression of these genes, and also a common function. In contrast to ucp1 and ucp3, ucp2 had a peak of expression at about 2 months, and lower expression at 3 months, suggesting different regulation and probably a different role for this UCP.  相似文献   

20.
Infection of bacteria triggers innate immune defense reactions in Drosophila. So far, the only bacterial component known to be recognized by the insect innate immune system is peptidoglycan, one of the most abundant constituents of the bacterial cell wall. Insects use peptidoglycan recognition proteins to detect peptidoglycan and to activate innate immune responses. Such specialized peptidoglycan receptors appear to have evolved from phage enzymes that hydrolyze bacterial cell walls. They are able to bind specific peptidoglycan molecules with distinct chemical moieties and activate innate immune pathways by interacting with other signaling proteins. Recent X-ray crystallographic studies of the peptidoglycan recognition proteins LCa, and LCx bound to peptidoglycan have provided structural insights into recognition of peptidoglycan and activation of innate immunity in insects. Received 28 December 2006; received after revision 2 February 2007; accepted 21 February 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号