首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Myosin I is a non-filamentous, single-headed, actin-binding motor protein and is present in a wide range of species from yeast to man. The role of these class I myosins have been studied extensively in simple eukaryotes, showing their role in diverse processes such as actin cytoskeleton organization, cell motility, and endocytosis. Recently, studies in metazoans have begun to reveal more specialized functions of myosin I. It will be a major challenge in the future to examine the physiological functions of each class I myosin in different cell types of metazoans.  相似文献   

2.
The RAG1 and RAG2 proteins play a crucial role in V(D)J recombination by cooperating to make specific double-stranded DNA breaks at a pair of recombination signal sequences (RSSs). However, the exact function they perform has heretofore remained elusive. Using a combination of sensitive methods of sequence analysis, we show here that the active core region of the RAG2 protein, confined to the first three quarters of its sequence, is in fact composed of a six-fold repeat of a 50-residue motif which is related to the kelch/mipp motif. This motif, which forms a four-stranded twisted antiparallel β sheet, is arranged in a circular formation like blades of a propeller or turbine. Given the known properties of the β-propeller fold in mediating protein-protein interactions, it is proposed that this six-laded propeller structure of the RAG2 active core would play a crucial role in the tight complex formed by the RAG1 and RAG2 proteins and RSSs. Moreover, the presence of a plant homeodomain finger-like motif in the last quarter of the RAG2 sequence suggests a potential interaction of this domain with chromatin components. Received 6 June 1998; accepted 9 June 1998  相似文献   

3.
Thrombospondins are large secreted, multimodular, calcium-binding glycoproteins that have complex roles in mediating cellular processes. Determination of high-resolution structures of thrombospondins has revealed unique and interesting protein motifs. Here, we review this progress and discuss implications for function. By combining structures of modules from thrombospondins and related extracellular proteins it is now possible to prepare an overall model of the structure of thrombospondin-1 and thrombospondin-2 and discern features of other thrombospondins. (Part of a multi-author Review)  相似文献   

4.
Molecular cloning and sequence analysis of myosin genes from Arabidopsis thaliana and electron microscopic observation of a myosin from characean alga have revealed that overall structure of plant unconventional myosins is similar to that of the class V myosins. These plant unconventional myosins have two heads, a coiled-coil tail of varied length and a globular tail piece at the end. The tail piece is probably a site for membrane interaction. Characean myosin is of special interest because it can translocate actin filaments at a velocity several times faster than muscle myosin, which must have evolved to support the quick movement of animals in the struggle for their lives.  相似文献   

5.
Computation plays an important role in functional genomics. THEMATICS is a computational method that predicts chemical and electrostatic properties of residues in enzymes and utilizes information contained in those predictions to identify active sites. The only input required is the three-dimensional structure of the query protein. The identification of residues involved in catalysis and in recognition is discussed. The two serine proteases Kex2 from Saccharomyces cerevisiae and subtilisin from Bacillus subtilis are used as examples to illustrate how the method finds the catalytic residues for both enzymes. In addition, Kex2 is specific for dibasic sites and THEMATICS finds the recognition residues for both the S1 and S2 sites of Kex2. In contrast, no such recognition sites are found for the non-specific enzyme subtilisin. The ability to identify sites that govern recognition opens the door to better understanding of specificity and to the design of highly specific inhibitors.Received 22 July 2003; received after revision 16 September 2003; accepted 20 October 2003  相似文献   

6.
G protein-coupled receptors (GPCRS) represent a class of integral membrane proteins involved in many biological processes and pathologies. Fifty percent of all modern drugs and almost 25% of the top 200 bestselling drugs are estimated to target GPCRs. Despite these crucial biological implications, very little is known, at atomic resolution, about the detailed molecular mechanisms by which these membrane proteins are able to recognize their extra-cellular stimuli and transmit the associated messages. Obviously, our understanding of GPCR functioning would be greatly facilitated by the availability of high-resolution three-dimensional (3D) structural data. However, expression, solubilization and purification of these membrane proteins are not easy to achieve, and at present, only one 3D structure has been determined, that of bovine rhodopsin. This review presents and compares the different successful strategies which have been applied to solubilize and purify recombinant GPCRs in the perspective of structural biology experiments. Received 21 November 2005; received after revision 20 January 2006; accepted 2 February 2006 An erratum to this article is available at .  相似文献   

7.
Proper brain connectivity and neuronal transmission rely on the accurate assembly of neurotransmitter receptors, cell adhesion molecules and several other scaffolding and signaling proteins at synapses. Several new exciting findings point to an important role for the neuroligin family of adhesion molecules in synapse development and function. In this review, we summarize current knowledge of the structure of neuroligins and neurexins, their potential binding partners at the synapse. We also discuss their potential involvement in several aspects of synapse development, including induction, specificity and stabilization. The implication of neuroligins in cognitive disorders such as autism and mental retardation is also discussed. Received 6 February 2006; received after revision 17 March 2006; accepted 26 April 2006  相似文献   

8.
Delivery of macromolecules into living cells by arginine-rich cell penetrating peptides (AR-CPPs) is an important new avenue for the development of novel therapeutic strategies. However, to date the mechanism of this delivery remains elusive. Recent data implicate endocytosis in the internalization of AR-CPPs and their macromolecular cargo and also indicate limited delivery of macromolecules into the cell cytoplasm and nucleus. Different types of endocytosis – clathrin-dependent endocytosis, raft/caveolin-dependent endocytosis and macropinocytosis – are all implicated in the uptake of AR-CPPs and their cargo into different cells. Cationic AR-CPPs dramatically increase uptake of conjugated molecules through efficient binding to surface proteoglycans. Whether this increase in binding can assure delivery of a sufficient amount of functionally active macromolecules into the cytoplasm and nucleus or whether there is a specific mechanism by which AR-CPPs facilitate the escape of conjugated cargo from endosomes remains to be understood. Received 30 June 2005; received after revision 9 August 2005; accepted 30 August 2005  相似文献   

9.
The spliceosome is a dynamic macromolecular machine that catalyzes pre-mRNA splicing through a mechanism controlled by several accessory proteins, including the Dim proteins. The Dim protein family is composed of two classes, Dim1 and Dim2, which share a common thioredoxin-like fold. They were originally identified for their role in cell cycle progression and have been found to interact with Prp6, an essential component of the spliceosome, which forms the bridge of U4/U6.U5-tri-snRNP. In spite of their biological and structural similarities, Dim1 and Dim2 proteins differ in many aspects. Dim1 bears distinctive structural motifs responsible for its interaction with other spliceosome components. Dim2 forms homodimers and contains specific domains required for its interactions with partners. This originality suggests that although both proteins are involved in pre-mRNA splicing, they are likely to be involved in different biological pathways. In the present article we review the structure and function of the Dim proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号