首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论了物理背景很强的KdV方程的精确解问题,并利用齐次平衡法的改进,把过去的常系数KdV方程的精确解推广,得到了变系数KdV方程的精确解.  相似文献   

2.
通过齐次平衡法及可化为Bernoulli方程的四阶常微分方程,求出了变系数KdV方程的精确解及孤立波解.  相似文献   

3.
在截断展开法中,运用新的展开形式,求出广义变系数KdV方程义变系数三种类型新的精确解。由此可见,用这种方法还可以求解一大类变系非线性演化方程。  相似文献   

4.
为了得到广义变系数五阶KdV方程的新解,本文利用试探函数法和符号计算系统Mathematica,研究了它的求解问题,并得到了广义变系数五阶KdV方程的由双曲函数与三角函数组成的类孤子新精确解.  相似文献   

5.
试探函数法与广义变系数Kdv方程的精确解   总被引:4,自引:0,他引:4  
通过引入一个变换和选准试探函数,将非线性变系数偏微分方程化为代数方程,然后用待定系数法确定相应的系数,从而得到其精确解.  相似文献   

6.
具有变系数的广义Burgers-KdV方程新精确解   总被引:2,自引:0,他引:2  
利用截断展开法求得了具有变系数的一类广义Burgers—KdV方程的新的精确解,作为特例,分别获得了具有变系数的广义KdV方程和广义柱KdV方程的精确解,由此发现了Burgers方程的一类新的孤子解。  相似文献   

7.
对双曲函数法进行了扩展,利用它找到了广义变系数Burgers方程在一定条件下的若干精确解,包括变速孤立波解和周期波解,许多解为首次所得.实例表明在对变系数偏微分方程的求解中,该法仍然是一种简便易行的方法.  相似文献   

8.
利用方程代换思想,对广义Riccati方程作变系数多项式展开,获得了(2+1)维变系数KdV方程的多种新精确解.相应地,亦得到近轴KdV方程的新精确解.  相似文献   

9.
借助符号计算软件Maple和第一种椭圆方程展开法求解(2+1)维广义变系数KdV方程,得到该方程的部分新形式的精确解,包括类孤子解、周期解和指数函数解.  相似文献   

10.
朱明星 《科学技术与工程》2011,11(35):8671-8673,8692
借助Mathematica软件和两个推广形式的投射Riccati方程组,求出了广义变系数BBM方程的一些精确解,包括各种类孤立波解、类周期解。  相似文献   

11.
用普通Korteweg-de Vries(KdV)方程的解,构造变系数广义KdV方程的解,获得变系数广义KdV方程新的类孤波解和类Jacobi椭圆函数解.  相似文献   

12.
利用一种函数变换将变系数KdV方程约化为非线性常微分方程(NLODE),并由此NLODE出发获得变系效KdV方程的若干精确类孤子解.可见,用这种方法还可以求解一大类变系数非线性演化方程.  相似文献   

13.
变系数Burgers方程的精确解   总被引:1,自引:1,他引:1  
对双曲函数法进行了扩展,利用它找到了变系数Burgers方程在一定条件下的若干精确解,包括变速孤立波解和周期波解.实例证明在对变系数偏微分方程的求解中,该法仍然是一种简便易行的方法.  相似文献   

14.
文章在截断展开法中采用特殊的函数变换形式,从而求出了广义变系数KdV方程三类新的精确解.这些解更具有一般性,它包含着已有文献给出的精确解析解.  相似文献   

15.
给出比C-KdV方程和广义KdV更一般的一类大非线性演化方程的精确解,由此得到了C-KdV方程广义KdV方程的精确行波解。  相似文献   

16.
变系数KdV方程的周期波解   总被引:4,自引:1,他引:4  
利用齐次平衡原则和F-展开法的思想求出了变系数KdV方程和柱KdV方程的多个以Jacobi椭圆函数表示的精确解,在极限情形也得到孤立波解和三角函数表示的精确解。这些解对于深入探讨流体力学和气象学方面的问题都有比较大的帮助。  相似文献   

17.
变系数非线性Schr(o)dinger方程的精确解   总被引:1,自引:0,他引:1  
对双曲函数法进行了扩展,利用其找到了变系数非线性Schroedinger(NLS)方程在一定条件下的若干精确解.实例证明,在变系数偏微分方程的求解中,该法仍然是一种简便易行的方法.  相似文献   

18.
对双曲函数法进行了扩展,利用其找到了变系数非线性Schr dinger(NLS)方程在一定条件下的若干精确解.实例证明,在变系数偏微分方程的求解中,该法仍然是一种简便易行的方法.  相似文献   

19.
两类变系数KdV方程的新精确孤波解   总被引:1,自引:0,他引:1  
通过试探方法得到辅助常微分方程的一些新的孤波解.利用该方程及其解,采用改进的tanh函数展开法研究了第1类和第2类变系数KdV方程,获得了在一定条件下的若干新精确孤波解.该方法也适合求解其他变系数非线性偏微分方程的孤波解.  相似文献   

20.
文章借助计算机代数系统Maple,利用三角函数法,得到组合KdV方程φt+αφφx+βφ^2φx+γφxxx=0的显式精确解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号