共查询到20条相似文献,搜索用时 62 毫秒
1.
本文藉助反对称矩阵的合同标准形及化合同标准形的方法,给出了偶数阶反对称矩阵的行列式(即反对称行列式)值的一种规律性计算法,从而得出一些特殊反对称矩阵的行列式的值. 相似文献
2.
讨论了反对称正交反对称矩阵特征值反问题有解的充分必要条件,在有解时给出了其解集的表达式,并且给出了其中与给定矩阵的最佳逼近解的表达式,以及求解该问题的算法及例子. 相似文献
3.
设P为一给定的对称正交矩阵,记AAnp={A∈Rn×n‖AT=-A,(PA)T=-PA}.讨论下列问题问题Ⅰ给定X,B∈Rn×m.求A∈AARnp使‖AX-B‖=min.问题Ⅱ设A∈Rn×n,求A*∈SE使‖A-A*‖=infA∈SE
‖A-A‖,其中SE为问题Ⅰ的解集合,‖·‖表示Frobenius范数.研究AARnp中元素的通式,给出问题Ⅰ解的一般表达式,证明了问题Ⅱ存在唯一逼近解A*,且得到了此解的具体表达式. 相似文献
4.
李珍珠 《湖南师范大学自然科学学报》2005,28(2):11-14
令S={A∈ASn|AZ=Y,ZT1ZT+1YT2=YT2,Y1Z+2Z2=Y1,ZT1Y1=-YT2Z2,Y,Z∈Rn×m},这里(ZT1 ZT2)=ZTD,(YT1 YT2)=YTD.研究了如下问题:问题Ⅰ 已知X,B∈Rn×n,找A∈S使‖AX-B‖=min.问题Ⅱ 给定A ∈Rn×n,找^A∈SE使‖A -^A‖=min A∈SE‖A -A‖.这里SE是问题Ⅰ的解集合,给出问题Ⅰ的解集合表达式和问题Ⅱ的逼近解. 相似文献
5.
6.
利用矩阵的奇异值分解,给出了了线性流形上矩阵方程AX=B的反对称正交反对称的最小二乘解表达式,并求出了与给定矩的最佳逼近. 相似文献
7.
讨论了对称正交反对称矩阵反问题的最小二乘解,得出了解的最小表达式.并讨论了用对称正交反对称矩阵构造给定矩阵的最佳逼近问题,给出了该问题有解的充要条件和解的表达式. 相似文献
8.
9.
利用矩阵的广义奇异值分解给出最小二乘问题XT=︱XAXB︱CFmin解的一般表达式,从矩阵的广义奇异值分解和Penrose定理2个方面给出矩阵方程AXB=C存在反对称解的充要条件. 相似文献
10.
令R是有单位元1的2-挠自由的交换环,Ln(R)是R上的n(n5)阶反对称矩阵李代数,Aij=Eij-Eji(1≤ij≤n),其中Eij表示(i,j)位置为1,其余位置为0的n阶方阵,是Ln(R)的一组基。通过李三导子在基Aij=Eij-Eji(1≤ij≤n)上的作用,研究反对称矩阵李代数的李三导子的结构,并给出其上的任意李三导子都是内导子、反对称矩阵李代数是完备李代数等结论。 相似文献
11.
设F是一个元素个数大于4的域,n≥2是一个正整数.令Mn(F)和Tn(F)分别是F上n×n全矩阵空间和上三角矩阵空间.首先刻画从Tn(F)到Mn(F)的保矩阵群逆的所有线性单射,由此Tn(F)到自身的所有保矩阵群逆的线性双射被刻画. 相似文献
12.
域上保上三角矩阵逆的线性映射 总被引:1,自引:0,他引:1
设F是一个元素个数大于3的域,n 2是一个正整数,令Mn(F)和Tn(F)分别是F上n×n全矩阵空间和上三角矩阵空间,首先刻画从Tn(F)到Mn(F)的保矩阵逆的所有线性单射,由此Tn(F)到自身的所有保矩阵逆的线性双射被刻画. 相似文献
13.
设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射. 相似文献
14.
设F是一个特征不为2的域,Tn(F)是域F上所有n×n的可逆上三角矩阵组成的群。首先利用矩阵的运算技巧研究了Tn(F)的所有幺幂正规子群的结构,对Tn(F)的任意一个幺幂正规子群给出了一个完全的刻画,即每一个幺幂正规子群都可以由一个元素来生成;然后借助可逆映射在生成元上的作用方式,给出了可逆上三角矩阵群上保幺幂正规子群的双射的具体表达式。 相似文献
15.
保矩阵群逆的线性算子 总被引:6,自引:2,他引:6
近年来一些作者对线性保持问题给予了极大的关注,但研究在环上保群逆的文章尚很少,文献[5]给出了2是单位的环上矩阵保群逆的线性算子的刻划。补充了[5]的结果,令R是特征2的主理想整环,M_0(R)记R上n×n矩阵代数,刻划了在R上保M_n(R)中矩阵的群逆的线性算子的形式。 相似文献
16.
域上对称矩阵空间上的保逆线性映射 总被引:2,自引:1,他引:1
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射. 相似文献
17.
令Sn(F)是元素个数大于3的域F上的n×n对称矩阵代数。在矩阵代数上定义了一种偏序,称为秩偏序,则T是Sn(F)上的一个保持秩偏序的可逆线性算子当且仅当存在一个可逆矩阵U∈M_n(F),使得T(X)=cUXU~T,X=(X_(ij)∈S_n(F),这里0≠c∈F,作为应用,还确定了S_n(F)上保持秩可加的线性算子。 相似文献
18.
矩阵空间上线性保持问题的几个结果 总被引:1,自引:1,他引:0
设Mn(F)表示域F上所有n×n矩阵构成的线性空间,sln(F)表示Mn(F)的包含所有迹零矩阵的子空间。基于一些现有的结论,刻划了Mn(F)上可逆的线性秩1平方零(平方零、对合)保持,以及Mn(F)上强线性平方零(对合)保持,所获得的结果展示了几类线性保持问题间的关系。 相似文献
19.
20.
厄尔米特矩阵空间上秩可加线性保持及其应用 总被引:1,自引:0,他引:1
以Hn记n×n复厄尔米特矩阵集合.刻划了Hn上秩可加线性保持.Hn对于运算加法(A,B)→A+B,乘法(A,B)→A·B=ABA和纯量乘法(c,A)→cA,其中A,B∈Hn及c∈R(实数域),形成一个非结合代数.给出了这个非结合代数的自同构. 相似文献