首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obliquity pacing of the late Pleistocene glacial terminations   总被引:1,自引:0,他引:1  
Huybers P  Wunsch C 《Nature》2005,434(7032):491-494
The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past approximately 700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (approximately 40,000 yr; approximately 40 kyr), orbital eccentricity (approximately 100 kyr) and precessional (approximately 20 kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing.  相似文献   

2.
Huybers P 《Nature》2011,480(7376):229-232
Milankovitch proposed that Earth resides in an interglacial state when its spin axis both tilts to a high obliquity and precesses to align the Northern Hemisphere summer with Earth's nearest approach to the Sun. This general concept has been elaborated into hypotheses that precession, obliquity or combinations of both could pace deglaciations during the late Pleistocene. Earlier tests have shown that obliquity paces the late Pleistocene glacial cycles but have been inconclusive with regard to precession, whose shorter period of about 20,000 years makes phasing more sensitive to timing errors. No quantitative test has provided firm evidence for a dual effect. Here I show that both obliquity and precession pace late Pleistocene glacial cycles. Deficiencies in time control that have long stymied efforts to establish orbital effects on deglaciation are overcome using a new statistical test that focuses on maxima in orbital forcing. The results are fully consistent with Milankovitch's proposal but also admit the possibility that long Southern Hemisphere summers contribute to deglaciation.  相似文献   

3.
对昆阳群中采集的283块样品用热退磁法做了磁清洗处理,经精度检验,进行了统计分析.根据获得的古地磁结果,探讨了昆阳群地层所代表的古地磁极性和古纬度,建立了该地区中、晚元古界古地磁视极移路径,并与华北地块及扬子地块该时期的视极移路径进行了对比,讨论了其构造运动及相互之间的关系,认为下昆阳亚群与长城系古纬度相近,古地磁极性及视极移路径可比,时代相当.  相似文献   

4.
Lisiecki LE  Raymo ME  Curry WB 《Nature》2008,456(7218):85-88
The factors driving glacial changes in ocean overturning circulation are not well understood. On the basis of a comparison of 20 climate variables over the past four glacial cycles, the SPECMAP project proposed that summer insolation at high northern latitudes (that is, Milankovitch forcing) drives the same sequence of ocean circulation and other climate responses over 100-kyr eccentricity cycles, 41-kyr obliquity cycles and 23-kyr precession cycles. SPECMAP analysed the circulation response at only a few sites in the Atlantic Ocean, however, and the phase of circulation response has been shown to vary by site and orbital band. Here we test the SPECMAP hypothesis by measuring the phase of orbital responses in benthic delta(13)C (a proxy indicator of ocean nutrient content) at 24 sites throughout the Atlantic over the past 425 kyr. On the basis of delta(13)C responses at 3,000-4,010 m water depth, we find that maxima in Milankovitch forcing are associated with greater mid-depth overturning in the obliquity band but less overturning in the precession band. This suggests that Atlantic overturning is strongly sensitive to factors beyond ice volume and summer insolation at high northern latitudes. A better understanding of these processes could lead to improvements in model estimates of overturning rates, which range from a 40 per cent increase to a 40 per cent decrease at the Last Glacial Maximum and a 10-50 per cent decrease over the next 140 yr in response to projected increases in atmospheric CO(2) (ref. 4).  相似文献   

5.
The majority of volcanic products on Mars are thought to be mafic and effusive. Explosive eruptions of basic to ultrabasic chemistry are expected to be common, but evidence for them is rare and mostly confined to very old surface features. Here we present new image and topographic data from the High Resolution Stereo Camera that reveal previously unknown traces of an explosive eruption at 30 degrees N and 149 degrees E on the northwestern flank of the shield volcano Hecates Tholus. The eruption created a large, 10-km-diameter caldera approximately 350 million years ago. We interpret these observations to mean that large-scale explosive volcanism on Mars was not confined to the planet's early evolution. We also show that glacial deposits partly fill the caldera and an adjacent depression. Their age, derived from crater counts, is about 5 to 24 million years. Climate models predict that near-surface ice is not stable at mid-latitudes today, assuming a thermo-dynamic steady state. Therefore, the discovery of very young glacial features at Hecates Tholus suggests recent climate changes. We show that the absolute ages of these very recent glacial deposits correspond very well to a period of increased obliquity of the planet's rotational axis.  相似文献   

6.
Images from the Mars Express HRSC (High-Resolution Stereo Camera) of debris aprons at the base of massifs in eastern Hellas reveal numerous concentrically ridged lobate and pitted features and related evidence of extremely ice-rich glacier-like viscous flow and sublimation. Together with new evidence for recent ice-rich rock glaciers at the base of the Olympus Mons scarp superposed on larger Late Amazonian debris-covered piedmont glaciers, we interpret these deposits as evidence for geologically recent and recurring glacial activity in tropical and mid-latitude regions of Mars during periods of increased spin-axis obliquity when polar ice was mobilized and redeposited in microenvironments at lower latitudes. The data indicate that abundant residual ice probably remains in these deposits and that these records of geologically recent climate changes are accessible to future automated and human surface exploration.  相似文献   

7.
Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles   总被引:21,自引:0,他引:21  
Rutherford S  D'Hondt S 《Nature》2000,408(6808):72-75
Between 1.5 and 0.6 Myr ago, the period of the Earth's glacial cycles changed from 41 kyr, the period of the Earth's obliquity cycles, to 100 kyr, the period of the Earth's orbital eccentricity, which has a much smaller effect on global insolation. The timing of this transition and its causes pose one of the most perplexing problems in palaeoclimate research. Here we use complex demodulation to examine the phase evolution of precession and semiprecession cycles--the latter of which are phase-coupled to both precession and eccentricity--in the tropical and extratropical Atlantic Ocean. We find that about 1.5 Myr ago, tropical semiprecession cycles (with periods of about 11.5 kyr) started to propagate to higher latitudes, coincident with a growing amplitude envelope of the 100-kyr cycles. Evidence from numerical models suggests that cycles of about 10 kyr in length may be required to explain the high amplitude of the 100-kyr cycles. Combining our results with consideration of a modern analogue, we conclude that increased heat flow across the equator or from the tropics to higher latitudes around 1.5 Myr ago strengthened the semiprecession cycle in the Northern Hemisphere, and triggered the transition to sustained 100-kyr glacial cycles.  相似文献   

8.
Recent ice ages on Mars   总被引:1,自引:0,他引:1  
A key pacemaker of ice ages on the Earth is climatic forcing due to variations in planetary orbital parameters. Recent Mars exploration has revealed dusty, water-ice-rich mantling deposits that are layered, metres thick and latitude dependent, occurring in both hemispheres from mid-latitudes to the poles. Here we show evidence that these deposits formed during a geologically recent ice age that occurred from about 2.1 to 0.4 Myr ago. The deposits were emplaced symmetrically down to latitudes of approximately 30 degrees--equivalent to Saudi Arabia and the southern United States on the Earth--in response to the changing stability of water ice and dust during variations in obliquity (the angle between Mars' pole of rotation and the ecliptic plane) reaching 30-35 degrees. Mars is at present in an 'interglacial' period, and the ice-rich deposits are undergoing reworking, degradation and retreat in response to the current instability of near-surface ice. Unlike the Earth, martian ice ages are characterized by warmer polar climates and enhanced equatorward transport of atmospheric water and dust to produce widespread smooth deposits down to mid-latitudes.  相似文献   

9.
Levrard B  Forget F  Montmessin F  Laskar J 《Nature》2004,431(7012):1072-1075
Observations from the gamma-ray spectrometer instrument suite on the Mars Odyssey spacecraft have been interpreted as indicating the presence of vast reservoirs of near-surface ice in high latitudes of both martian hemispheres. Ice concentrations are estimated to range from 70 per cent at 60 degrees latitude to 100 per cent near the poles, possibly overlain by a few centimetres of ice-free material in most places. This result is supported by morphological evidence of metres-thick layered deposits that are rich in water-ice and periglacial-like features found only at high latitudes. Diffusive exchange of water between the pore space of the regolith and the atmosphere has been proposed to explain this distribution, but such a degree of concentration is difficult to accommodate with such processes. Alternatively, there are suggestions that ice-rich deposits form by transport of ice from polar reservoirs and direct redeposition in high latitudes during periods of higher obliquity, but these results have been difficult to reproduce with other models. Here we propose instead that, during periods of low obliquity (less than 25 degrees), high-latitude ice deposits form in both hemispheres by direct deposition of ice, as a result of sublimation from an equatorial ice reservoir that formed earlier, during a prolonged high-obliquity excursion. Using the ice accumulation rates estimated from global climate model simulations we show that, over the past ten million years, large variations of Mars' obliquity have allowed the formation of such metres-thick, sedimentary layered deposits in high latitude and polar regions.  相似文献   

10.
Liu Z  Herbert TD 《Nature》2004,427(6976):720-723
Many records of tropical sea surface temperature and marine productivity exhibit cycles of 23 kyr (orbital precession) and 100 kyr during the past 0.5 Myr (refs 1-5), whereas high-latitude sea surface temperature records display much more pronounced obliquity cycles at a period of about 41 kyr (ref. 6). Little is known, however, about tropical climate variability before the mid-Pleistocene transition about 900 kyr ago, which marks the change from a climate dominated by 41-kyr cycles (when ice-age cycles and high-latitude sea surface temperature variations were dictated by changes in the Earth's obliquity) to the more recent 100-kyr cycles of ice ages. Here we analyse alkenones from marine sediments in the eastern equatorial Pacific Ocean to reconstruct sea surface temperatures and marine productivity over the past 1.8 Myr. We find that both records are dominated by the 41-kyr obliquity cycles between 1.8 and 1.2 Myr ago, with a relatively small contribution from orbital precession, and that early Pleistocene sea surface temperatures varied in the opposite sense to local annual insolation in the eastern equatorial Pacific Ocean. We conclude that during the early Pleistocene epoch, climate variability at our study site must have been determined by high-latitude processes that were driven by orbital obliquity forcing.  相似文献   

11.
Seven terraces along the Weihe River in Longxi basin have been investigated. These terraces all consist of archetypal duality in structure, namely the floodplain deposits and the layer of gravels overlaid by varying thickness of the loess. By resorting to various dating approaches such as palaeomagnetic, optically stimulated luminescenece (OSL), 14C and loess-paleosol sequence, we provide preliminary timing of these seven terraces along upper Weihe River. Analysis on sedimentation characteristics and dating of these terraces showed that seven terraces may be jointly generated by tectonic uplifts and climatic changes. Tectonic uplifts may accommodate initial river incision, and climatic change may be responsible for processes of subsequent channel widening and aggradation. Aggradation normally occurs during glacial periods, in contrast to down-cuttings during transitions from glacial to interglacial period. Moreover, on the basis of the timings and heights of these terraces, we infer that the long-term rate of river incision was determined to be 0.2 m/kyr during the last 870 kyr, which differs from other river incision rates. This discrepancy may reflect spatio-temporal differentiation of tectonic activities in the Qinling orogenic belt during the Pleistocene.  相似文献   

12.
Dating and genesis of the upper Weihe River terraces in Longxi basin,China   总被引:5,自引:0,他引:5  
Seven terraces along the Weihe River in Longxi basin have been investigated. These terraces all consist of archetypal duality in structure, namely the floodplain deposits and the layer of gravels overlaid by varying thickness of the loess. By resorting to various dating approaches such as palaeomagnetic, optically stimulated luminescenece (OSL), 14C and loess-paleosol sequence, we provide preliminary timing of these seven terraces along upper Weihe River. Analysis on sedimentation characteristics and dating of these terraces showed that seven terraces may be jointly generated by tectonic uplifts and climatic changes. Tectonic uplifts may accommodate initial river incision, and climatic change may be responsible for processes of subsequent channel widening and aggradation. Aggradation normally occurs during glacial periods, in contrast to down-cuttings during transitions from glacial to interglacial period. Moreover, on the basis of the timings and heights of these terraces, we infer that the long-term rate of river incision was determined to be 0.2 m/kyr during the last 870 kyr, which differs from other river incision rates. This discrepancy may reflect spatio-temporal differentiation of tectonic activities in the Qinling orogenic belt during the Pleistocene.  相似文献   

13.
Geological and palaeomagnetic studies indicate that ice sheets may have reached the Equator at the end of the Proterozoic eon, 800 to 550 million years ago, leading to the suggestion of a fully ice-covered 'snowball Earth'. Climate model simulations indicate that such a snowball state for the Earth depends on anomalously low atmospheric carbon dioxide concentrations, in addition to the Sun being 6 per cent fainter than it is today. However, the mechanisms producing such low carbon dioxide concentrations remain controversial. Here we assess the effect of the palaeogeographic changes preceding the Sturtian glacial period, 750 million years ago, on the long-term evolution of atmospheric carbon dioxide levels using the coupled climate-geochemical model GEOCLIM. In our simulation, the continental break-up of Rodinia leads to an increase in runoff and hence consumption of carbon dioxide through continental weathering that decreases atmospheric carbon dioxide concentrations by 1,320 p.p.m. This indicates that tectonic changes could have triggered a progressive transition from a 'greenhouse' to an 'icehouse' climate during the Neoproterozoic era. When we combine these results with the concomitant weathering effect of the voluminous basaltic traps erupted throughout the break-up of Rodinia, our simulation results in a snowball glaciation.  相似文献   

14.
The geomagnetic fields, which play important roles in the ionospheric dynamo, can greatly affect the global distribution of ionospheric electric fields, currents and other ionospheric electrodynamics phenomena. In the study of ionospheric electrodynamics phenomena, such as the longitudinal variations of ionospheric electric fields, the non-dipolar component of the geomagnetic fields must be taken into account. In this paper, we deduce a theoretical electric field model for ionospheric dynamo at mid- and low-latitude which adopt a modified magnetic apex coordinates system. In the new electric field model, the geomagnetic fields can be calculated from either the IGRF model or the dipole field model, and the neutral winds and conductivities are calculated based on empirical models. Then the dynamo equation for the electric potential is finally solved in terms of the line-by-line iteration method, and the ionospheric electric fields and currents are derived from the calculated potential. Our model can reproduce the main features of the ionospheric electrodynamics processes, so it will be a useful tool for the investigation of the upper atmosphere and ionosphere.  相似文献   

15.
北山地区位于新疆东部塔里木地块东北缘,东西长约300km,南北宽约100km,近来发现了一系列金矿点。该区主要由古生界的沉积-火山岩系组成,局部含太古界至下元古界的结晶基底,覆中新生界盖层。两期重要的玄武质岩浆活动与金矿化有关。金矿点产于前寒武纪的准绿片岩中,但主要产于石炭纪的硅化和黄铁矿化岩石中,由走向NEE-SWW向的大型逆断层控制。金矿源来自上地幔部分熔融产生的玄武岩,后期经活化富集于北山地区南部推覆前缘叠瓦断层带中。矿物的晶形、成分、物性可作为良好的找矿标志。研究表明,北山地区有可能找到大型或超大型金矿床。  相似文献   

16.
Lourens LJ  Wehausen R  Brumsack HJ 《Nature》2001,409(6823):1029-1033
The evolution of the Solar System has been shown to be chaotic, which limits our ability to retrace the orbital and precessional motion of the Earth over more than 35-50 Myr (ref. 2). Moreover, the precession, obliquity and insolation parameters can also be influenced by secular variations in the tidal dissipation and dynamical ellipticity of the Earth induced by glacial cyclicity and mantle convection. Here we determine the average values of these dissipative effects over the past three million years. We have computed the optimal fit between an exceptional palaeoclimate record from the eastern Mediterranean Sea and a model of the astronomical and insolation history by testing a number of values for the tidal dissipation and dynamical ellipticity parameters. We find that the combined effects of dynamical ellipticity and tidal dissipation were, on average, significantly lower over the past three million years, compared to their present-day values (determined from artificial satellite data and lunar ranging). This secular variation associated with the Plio-Pleistocene ice load history has caused an average acceleration in the Earth's rotation over the past 3 Myr, which needs to be considered in the construction of astronomical timescales and in research into the stationarity of phase relations in the ocean-climate system through time.  相似文献   

17.
Tanaka KL 《Nature》2005,437(7061):991-994
Mariner 9 and Viking spacecraft images revealed that the polar regions of Mars, like those of Earth, record the planet's climate history. However, fundamental uncertainties regarding the materials, features, ages and processes constituting the geologic record remained. Recently acquired Mars Orbiter Laser Altimeter data and Mars Orbiter Camera high-resolution images from the Mars Global Surveyor spacecraft and moderately high-resolution Thermal Emission Imaging System visible images from the Mars Odyssey spacecraft permit more comprehensive geologic and climatic analyses. Here I map and show the history of geologic materials and features in the north polar region that span the Amazonian period (approximately 3.0 Gyr ago to present). Erosion and redeposition of putative circumpolar mud volcano deposits (formed by eruption of liquefied, fine-grained material) led to the formation of an Early Amazonian polar plateau consisting of dark layered materials. Crater ejecta superposed on pedestals indicate that a thin mantle was present during most of the Amazonian, suggesting generally higher obliquity and insolation conditions at the poles than at present. Brighter polar layered deposits rest unconformably on the dark layers and formed mainly during lower obliquity over the past 4-5 Myr (ref. 20). Finally, the uppermost layers post-date the latest downtrend in obliquity <20,000 years ago.  相似文献   

18.
利用多种频谱分析方法,对珠江口盆地Langhian阶韩江组三角洲相硅质碎屑岩及浅海相碳酸盐岩韵律性交替地层进行旋回地层学分析,然后选择最新天文周期解决方案中的北纬65°夏半年日照量曲线及斜率曲线作为目标曲线,对自然伽马测井曲线进行天文调谐,得到高分辨率天文调谐地质年代表。结果表明:珠江口盆地中中新世韩江组地层旋回受天文轨道周期变化的驱动;利用天文调谐地质年代表进行的定年结果与前人利用古地磁对南中国海相邻盆地的定年一致;通过天文调谐地质年代表求得的研究层段高分辨率沉积速率变化与天文轨道周期偏心率曲线可以对应,推测沉积速率变化的主要控制因素是405 ka长周期偏心率。  相似文献   

19.
The four final rotation states of Venus.   总被引:1,自引:0,他引:1  
A C Correia  J Laskar 《Nature》2001,411(6839):767-770
Venus rotates very slowly on its axis in a retrograde direction, opposite to that of most other bodies in the Solar System. To explain this peculiar observation, it has been generally believed that in the past its rotational axis was itself rotated to 180 degrees as a result of core-mantle friction inside the planet, together with atmospheric tides. But such a change has to assume a high initial obliquity (the angle between the planet's equator and the plane of the orbital motion). Chaotic evolution, however, allows the spin axis to flip for a large set of initial conditions. Here we show that independent of uncertainties in the models, terrestrial planets with dense atmosphere like Venus can evolve into one of only four possible rotation states. Moreover, we find that most initial conditions will drive the planet towards the configuration at present seen at Venus, albeit through two very different evolutionary paths. The first is the generally accepted view whereby the spin axis flips direction. But we have also found that it is possible for Venus to begin with prograde rotation (the same direction as the other planets) yet then develop retrograde rotation while the obliquity goes towards zero: a rotation of the spin axis is not necessary in this case.  相似文献   

20.
Tarduno JA  Cottrell RD  Watkeys MK  Bauch D 《Nature》2007,446(7136):657-660
The strength of the Earth's early geomagnetic field is of importance for understanding the evolution of the Earth's deep interior, surface environment and atmosphere. Palaeomagnetic and palaeointensity data from rocks formed near the boundary of the Proterozoic and Archaean eons, some 2.5 Gyr ago, show many hallmarks of the more recent geomagnetic field. Reversals are recorded, palaeosecular variation data indicate a dipole-dominated morphology and available palaeointensity values are similar to those from younger rocks. The picture before 2.8 Gyr ago is much less clear. Rocks of the Archaean Kaapvaal craton (South Africa) are among the best-preserved, but even they have experienced low-grade metamorphism. The variable acquisition of later magnetizations by these rocks is therefore expected, precluding use of conventional palaeointensity methods. Silicate crystals from igneous rocks, however, can contain minute magnetic inclusions capable of preserving Archaean-age magnetizations. Here we use a CO2 laser heating approach and direct-current SQUID magnetometer measurements to obtain palaeodirections and intensities from single silicate crystals that host magnetite inclusions. We find 3.2-Gyr-old field strengths that are within 50 per cent of the present-day value, indicating that a viable magnetosphere sheltered the early Earth's atmosphere from solar wind erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号