共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of lunar magnetic anomalies remains unresolved after their discovery more than four decades ago. A commonly invoked hypothesis is that the Moon might once have possessed a thermally driven core dynamo, but this theory is problematical given the small size of the core and the required surface magnetic field strengths. An alternative hypothesis is that impact events might have amplified ambient fields near the antipodes of the largest basins, but many magnetic anomalies exist that are not associated with basin antipodes. Here we propose a new model for magnetic field generation, in which dynamo action comes from impact-induced changes in the Moon's rotation rate. Basin-forming impact events are energetic enough to have unlocked the Moon from synchronous rotation, and we demonstrate that the subsequent large-scale fluid flows in the core, excited by the tidal distortion of the core-mantle boundary, could have powered a lunar dynamo. Predicted surface magnetic field strengths are on the order of several microteslas, consistent with palaeomagnetic measurements, and the duration of these fields is sufficient to explain the central magnetic anomalies associated with several large impact basins. 相似文献
2.
随着网络的不断发展,越来越多的人倾向于使用网络中的语言进行表达。网络语言在经历一系列的发展之后出现了一种新的变体,那就是火星文。在网络时代,火星文的运用使得汉语及汉字在语用策略与修辞上有所突破。 相似文献
3.
4.
文中利用非线性动力学理论讨论了Rikitake双盘发电机模型的混沌特性。数值计算得到该模型的定态解,并分析了该定态解的稳定性。利用数值仿真,得到该模型在一定参数和初始状态下的吸引子。利用全局分岔图和最大Lyapunov指数谱表征了系统在μ∈[0.1,7]时具有的丰富的动力学行为,利用耦合混沌同步方法实现了该发电机模型的混沌同步。 相似文献
5.
Christensen UR 《Nature》2006,444(7122):1056-1058
Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned. 相似文献
6.
利用非线性动力学理论讨论了带摩擦的Rikitake双盘发电机模型的混沌特性.通过数值计算得到该模型的定态解,并分析了该定态解的稳定性.利用数值仿真,得到在一定参数和初始状态下的吸引子和分岔图.为了实现该系统的混沌同步,选用耦合同步法,并选择了合适的耦合参数进行数值计算和计算机仿真.结果表明,该系统快速地达到了混沌同步. 相似文献
7.
Suffolk GC 《Nature》1970,226(5246):628-629
8.
9.
10.
Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane. 相似文献
11.
电控助力转向系统电机驱动电路设计方案的研究 总被引:6,自引:0,他引:6
在分析电动助力转向系统电机驱动电路性能和可靠性要求的基础上,对比常用的PWM控制直流电机的优缺点,提出了电动助力转向系统驱动电路的设计方案:上、下管均采用N沟道MOS管,上管常通或常闭,下管由PWM逻辑电平控制.该方案应用于笔者所开发的电动助力转向系统中,试验表明,切实可行,可靠性高,能够满足要求. 相似文献
12.
13.
Martian stepped-delta formation by rapid water release 总被引:1,自引:0,他引:1
Deltas and alluvial fans preserved on the surface of Mars provide an important record of surface water flow. Understanding how surface water flow could have produced the observed morphology is fundamental to understanding the history of water on Mars. To date, morphological studies have provided only minimum time estimates for the longevity of martian hydrologic events, which range from decades to millions of years. Here we use sand flume studies to show that the distinct morphology of martian stepped (terraced) deltas could only have originated from a single basin-filling event on a timescale of tens of years. Stepped deltas therefore provide a minimum and maximum constraint on the duration and magnitude of some surface flows on Mars. We estimate that the amount of water required to fill the basin and deposit the delta is comparable to the amount of water discharged by large terrestrial rivers, such as the Mississippi. The massive discharge, short timescale, and the associated short canyon lengths favour the hypothesis that stepped fans are terraced delta deposits draped over an alluvial fan and formed by water released suddenly from subsurface storage. 相似文献
14.
15.
Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids. 相似文献
16.
17.
18.
Although the Moon currently has no internally generated magnetic field, palaeomagnetic data, combined with radiometric ages of Apollo samples, provide evidence for such a magnetic field from approximately 3.9 to 3.6 billion years (Gyr) ago, possibly owing to an ancient lunar dynamo. But the presence of a lunar dynamo during this time period is difficult to explain, because thermal evolution models for the Moon yield insufficient core heat flux to power a dynamo after approximately 4.2 Gyr ago. Here we show that a transient increase in core heat flux after an overturn of an initially stratified lunar mantle might explain the existence and timing of an early lunar dynamo. Using a three-dimensional spherical convection model, we show that a dense layer, enriched in radioactive elements (a 'thermal blanket'), at the base of the lunar mantle can initially prevent core cooling, thereby inhibiting core convection and magnetic field generation. Subsequent radioactive heating progressively increases the buoyancy of the thermal blanket, ultimately causing it to rise back into the mantle. The removal of the thermal blanket, proposed to explain the eruption of thorium- and titanium-rich lunar mare basalts, plausibly results in a core heat flux sufficient to power a short-lived lunar dynamo. 相似文献
19.
20.