共查询到20条相似文献,搜索用时 0 毫秒
1.
基于选择性的贝叶斯分类器集成方法 总被引:2,自引:0,他引:2
提出一种基于选择性的贝叶斯分类器集成方法.该方法为避免数据预处理时的属性约简对分类效果的直接影响,在训练集上通过随机属性选取生成若干属性子集,并以这些子集训练不同的贝叶斯分类器,进而采用遗传算法优选贝叶斯分类器集成,其适应度函数综合了分类器的精度和差异度两项指标.实验中,将该方法与已有方法在UCI的标准数据集上进行了性能比较,并将该方法用于C^3I系统中的威胁度估计。 相似文献
2.
概念漂移给数据流挖掘工作带来了很大阻碍.经典的SEA算法通过动态裁剪集成分类器的方式有效地捕获到概念漂移.其裁剪集成分类器的策略是直接删除掉一个权值最低的基础分类器,这意味着算法抛弃了一个已经学习了的概念,当该概念再出现时还需再学习,导致算法效率的降低.现提出了一种能够提取旧概念的算法(ECRRC),并给出了存储和提取概念的具体方法.面对概念的重复出现,ECRRC不用再学习就能够完成数据流分类.实验结果表明,ECRRC能够提高数据流分类效率. 相似文献
3.
提出一种神经网络分类器的动态集成方法.基于bootstrapping构建不同的个体神经网络,针对混合属性,通过不同的加权最近邻设计评估单个网络的分类精度,在此基础上动态选择误差率较小的神经网络,经过投票形成集成分类结果.将该方法与其它几种集成方法在10个UCI数据集上进行了分类性能比较.实验结果表明,该方法在上述所有数据集上的平均分类精度最佳,同时发现,Bagging比隐层神经元数法能更好地生成个体网络,而将两者结合起来训练个体神经网络,并不能明显提高集成性能. 相似文献
4.
5.
针对基于决策树和神经网络的增量学习算法的过量匹配和分类精度有限的缺点,提出了一种基于贝叶斯分类器集成的增量学习方法.综合朴素贝叶斯的增量分类和集成的增量学习方法,采用随机属性选择训练初始SBC(simple Bayesian classifiers),通过判断是否带有类别标签,将增量样本自动分组,并利用遗传算法对结果进行优化.实验结果表明,贝叶斯分类器集成的增量学习方法有效. 相似文献
6.
一种识别手写字符的多分类器集成方法 总被引:1,自引:0,他引:1
提出了一个识别手写字符的综合网络集成模型,该模型由2个B-小波神经网络分类器和一个Morlet-小波神经网络分类器构成,实验的结果充分显示了该方法的有效性。 相似文献
7.
针对传统检测模型仅通过单一方法进行窃电检测具有局限性且用电数据中存在类不平衡的问题,从集成学习的角度出发,本文提出一种基于熵权法融合异质分类器的窃电检测模型。首先,通过少数类样本合成过采样技术(synthetic minority oversampling technique,SMOTE)处理用电数据不平衡的问题,其次综合考虑个体分类器之间的多样性以及各自的检测性能和训练机理进行基分类器的优选,最后,引入信息熵的概念,基于各个基分类器分类结果的分散程度,计算其权重占比,并以该权重占比集成各基分类器的输出。实验结果表明,对比传统的窃电检测模型,本文所提模型在多项评价指标下表现较好,具有良好的检测性能。 相似文献
8.
谷雨 《云南民族大学学报(自然科学版)》2012,21(1):59-65
分类器之间的多样性被认为是分类器集成的一个关键因素.然而,目前多样性没有统一的定义和度量,也没有确定的操作方法.针对这些问题,总结和介绍了现有的一些多样性度量方法,及其在可视化、构造分类器集成方面的多种具体应用方法.最后,讨论了精度与多样性两难问题,并给出了多样性方法的有效性说明,指出关于集成学习和多样性的研究还有很多问题亟待解决. 相似文献
9.
《西安交通大学学报》2016,(2)
针对多分类器系统差异性评价中无法直接处理模糊数据的问题,提出了一种采用互补信息熵的分类器集成差异性度量(CIE)方法。首先利用训练数据生成一系列基分类器,并对测试数据进行分类,将分类结果依次组合生成分类数据空间;然后采用模糊关系条件下的互补信息熵度量分类数据空间蕴含的不确定信息量,据此信息量判断基分类器间的差异性;最后以加入基分类器后数据空间差异性增加为选择分类器的基本准则,构建集成分类器系统,用于验证CIE差异性度量与集成分类精度之间的关系。实验结果表明,与Q统计方法相比,利用CIE方法进行分类器集成,平均集成分类精度提高了2.03%,分类器系统集成规模降低约17%,而且提高了集成系统处理多样化数据的能力。 相似文献
10.
11.
针对神经网络应用于电力系统暂态稳定评估存在的误分类问题,将粗糙集理论和神经网络相结合,运用特征矩阵进行属性约简的基础上,应用装袋策略构造集成神经网络分类器来提高分类准确率,在新英格兰10机39节点系统中的应用验证了该分类器的分类准确率较普通神经网络分类器有较大的提高、 相似文献
12.
提出基于多特征集成分类器的人脸表情识别新算法。新算法首先对预处理后的人脸表情图像通过3种不同的特征提取方法来提取不同类型的表情特征,然后对不同特征构造不同的分类器,最后构造一个基于神经网络的集成分类器模型,对这3个分类器的输出进行决策融合,从而实现人脸表情的最终识别。在JAFFE人脸表情数据库中的试验结果表明,所提算法的识别效果优于单个特征和单一的分类器。 相似文献
13.
研究了基于聚类技术提高分类器差异性的方法.通过Bootstrap技术与分类器学习算法训练分类器模型,利用分类器在验证集上的分类结果作为聚类的数据对象;然后应用聚类算法对这些数据聚类,并在每个簇中选择分类器代表模型,以此构成集成学习的成员;最后应用融合方法实验研究了基于聚类技术提高差异性的集成学习性能,并与集成学习方法bagging,adaboost进行了实验比较. 相似文献
14.
随着经济的发展,通讯行业的竞争也日益激烈,客户流失已经成为造成企业经济损失的重要原因。为了给企业决策者提供较为准确的客户流失预测分析,提出了基于集成多分类模型的预测方法。基础模型的构造上选择基于显露模式的算法,在训练样本上建立N个并列的基础模型,按投票的方式集成N个模型的决策能力,最终对客户流失进行准确的预测,为电信公司的决策层提供可靠的分析结果。实验数据表明,相对于单一模型,集成分类算法不仅有显著的分类准确率,还有较强的泛化能力。 相似文献
15.
半监督学习是一种利用有标记样本和无标记样本进行学习的新的机器学习方法。针对单分类中只有目标类标记样本和大量无标记样本的情况,提出了一种基于半监督学习的单类分类算法。利用已标识的有标记样本建立两个单类分类器,通过相互学习来挖掘未标记样本中的隐含信息,扩大有标记样本的数量。利用所有已标识样本,用不同的单分类方法建立多个单类分类器,通过集成学习的方法得到最终的分类器。在UCI数据集上进行了实验,表明提出的基于半监督学习的单类分类器的有效性。 相似文献
16.
在计算机辅助诊断系统中使用集成分类器是提高机器识别能力的一种重要途径。针对集成分类器投票组合算法中存在的投票可信度问题,提出了一种基于Grading的集成分类器组合算法EGR,该算法根据集成分类器对样本的预测结果是否正确来转换相应样本的类标签,用新数据构造元分类器。在UCI医学数据集上进行的实验结果显示,EGR算法对分类精度的提升以及敏感性与特异性的整体改善是有效的。 相似文献
17.
疲劳驾驶是引起众多交通事故的重要因素之一,脑电作为一种直接反映大脑组织电活动的信号日趋成为评估驾驶疲劳检测与预警的研究焦点。本文提出了一种基于AdaBoost的组合型实验方法用于分析脑电检测疲劳驾驶。试验过程中针对不同受试者采用独立成分分析(Independent Component Correlation Algorithm, ICA)处理分析,继而进行样本熵、信息熵、模糊熵和AR系数的特征提取;最后运用AdaBoost将最小二乘向量机基于三种核分类器集成为一个强分类器。试验结果显示,采用AdaBoost分类器分类效果优于单个核分类器,对疲劳驾驶平均识别率达到93%,五折交叉验证准确率为91.04%,在一定程度上推动了基于脑电信号的安全驾驶辅助监控系统的研究。 相似文献
18.
分类器集成在财务危机预测中的应用研究 总被引:6,自引:0,他引:6
财务困境预测是金融领域中一个重要的研究课题.已有的统计模型、人工智能和机器学习模型具有预测准确率较低或稳定性差等缺点,因此首次将分类器集成应用于财务危机预测研究,以我国上市公司为研究对象,以决策树和神经网络为子分类器,从实验上证实了分类器集成在提高财务危机预测准确性方面的有效性,最后指出需要进一步研究的几个问题. 相似文献
19.
给出了主成分分析法(PCA)的数学描述及解释,提出了基于PCA的分类器提取方法及基于PCA的集成学习算法.在UCI的6个公用数据集上,对提出的算法进行了较全面的实验研究和分析,实验表明在多项指标上所提出的算法优于表现良好的传统集成学习算法. 相似文献
20.
《南京理工大学学报(自然科学版)》2021,45(5)
X射线结晶学是确定蛋白质分子结构的重要方法之一。准确预测蛋白质的结晶倾向性对于基于X射线结晶学的蛋白质结构确定的成功率具有重要意义。该文提出了一种基于异质分类器集成的方法,以进一步提高蛋白质结晶倾向性预测的准确率。首先从蛋白质序列出发抽取氨基酸组成成分、伪氨基酸组成成分、伪位置特异性得分矩阵以及伪溶剂可及性特征,并将这些特征进行组合;然后,在特征空间训练多个异质分类器并进行集成。该文所提方法在公开训练集上的五重交叉验证及独立测试集上的马修斯系数分别达到了0.64及0.73。与现有的基于序列的蛋白质结晶倾向性预测方法的对比结果进一步验证了所提方法的有效性。 相似文献