首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对最小二乘支持向量机建模中超参数选择盲目的问题,提出了一种新的改进果蝇优化算法用于超参数寻优。该算法在果蝇优化算法的基础上,通过判断当代寻优所获得的最优值与前代最优值的关系来选择不同的步长计算公式,以实现搜索步长的自适应更新,使其不仅具有果蝇优化算法调整参数少、计算速度快的优越性,而且提高了果蝇优化算法的寻优精度和全局寻优能力。仿真结果和磨机负荷应用表明,与基于网格搜索法、粒子群优化算法以及未改进的果蝇优化算法所建立的预测模型相比,基于改进的果蝇优化算法所建立的预测模型可以显著提高磨机负荷的预测精度,能更准确地描述出磨机负荷的变化规律。  相似文献   

2.
研究了基于运动想象脑电信号对大脑的想象运动状态进行分类识别的问题.根据事件相关同步和事件相关去同步现象识别出被试的想象运动状态,通过频带能量特征提取方法获得了想象左右手运动时的脑电信号特征,使用最小二乘支持向量机对提取到的频带能量特征进行分类.结果表明,使用最小二乘支持向量机可以对运动想象脑电信号的频带能量特征进行有效分类,分类正确率达到92%,其分类效果与使用标准支持向量机相当,但在计算速度上更有优势.  相似文献   

3.
为了有效地利用大数据中的无类别标签样本,将最小二乘支持向量机的思想和方法运用到半监督学习中,利用有类别标签和无类别标签样本构造支持向量机模型,通过Lagrange数乘法将其转化为一个线性规划问题,得到了一种适用于大数据的最小二乘半监督支持向量机.该算法有效地提高了支持向量机的测试准确率,具有较好的推广能力.  相似文献   

4.
针对标准支持向量机计算复杂度高、内存开销大、训练速度慢的缺点,为改善标准支持向量机的训练效率,快速优化阵列波束,提出了基于最小二乘支持向量机(least squares support vector machine,LSSVM)的阵列波束优化方法。LSSVM采用二次损失函数取代标准支持向量机中的不敏感损失函数,将不等式约束变为等式约束,从而将二次规划问题转化为一个线性矩阵求解问题,具有良好的快速性;与传统的标准支持向量机波束形成相比,所需计算资源更少,训练速度更快,计算效率更高,泛化能力更强。仿真实验结果表明:在保持波束形成的性能指标基本不变的情况下,LSSVM降低了计算复杂度,减少了内存开销,提高了运算速度和收敛精度,为波束形成器的优化设计提供了一种新的有效方法。  相似文献   

5.
数据分类作为模式识别、故障诊断技术的基础,在实际应用中常常由于系统的非线性、噪声性以及样本的不平衡采集,使得常规的分类算法存在一定的局限性。将最小二乘加权支持向量机用于分类问题,利用K聚类算法分析样本间内在关系从而确定权值系数,可以很好地减小噪声影响,补偿不同类样本数目上的不平衡,减少训练时间,提高分类正确率。通过一个图像识别过程中多类别分类实例,证明了算法在分类问题中的有效性。该方法可以成为现有方法的有效补充分析工具。  相似文献   

6.
基于混沌最小二乘支持向量机的软测量建模   总被引:1,自引:0,他引:1  
提出一种改进算法,用来解决现有最小二乘支持向量机方法在处理大规模样本软测量建模问题时出现的模型结构复杂、失去支持向量稀疏性且正规化参数和核参数难以确定等问题.对样本集进行预处理,通过计算样本间欧氏距离进行样本相似程度分析,去除样本集中1/3的样本以简化支持向量机模型结构并提高计算速度.定义了一种混沌映射构成混沌系统并分析了其遍历性.应用改进的混沌优化算法优化最小二乘支持向量机模型参数以提高模型的拟合精度和泛化能力.将改进算法用于丙烯腈收率软测量建模中,仿真实验结果表明:模型精度较高,泛化性能好,满足现场测量要求.  相似文献   

7.
为了解决传统最小二乘支持向量回归机(LS-SVR)对训练样本量要求过高的问题,提出了基于梯度信息的支持向量回归机(GE-LS-SVR)模型.通过修改目标函数及约束条件,将梯度信息引入模型的构建中,重新构造了决策函数.采用了三个基准函数对模型进行了验证,并用三个常用度量准则对实验结果进行了比较.结果表明提出的模型能在较少样本的情况下达到较为理想的回归精度.  相似文献   

8.
目标识别是目前机器视觉、图像处理和模式识别领域的研究热点之一,广泛应用于各行各业。最小二乘支持向量机算法简便、速度快、精度高,是当前目标识别的主流算法之一。针对最小二乘支持向量机的参数难以确定,仅靠传统经验试凑的方法不易实现,且结果不理想;提出一种改进的差分进化算法实现最小二乘支持向量机的参数整定。通过改进变异策略,引入早熟判断机制,遏制了传统算法早熟收敛的问题。通过实验仿真,验证了改进算法可跳出局部最优点,结果比传统算法更优。以SM-TMSSY光电伺服跟踪转台为实验平台进行实例验证,证明了改进算法收敛速度快、精度高,正确识别率可从85%提高到92.5%,验证了算法的优越性。  相似文献   

9.
从最小二乘支持向量机的稀疏表达出发,构建高效的基于稀疏最小二乘支持向量机的网络入侵检测模型,提出了一种通过基于核空间近似策略的有效低秩逼近来有效减小原始训练样本集中的支持向量数来实现最终模型的稀疏表达.以MIT KDD99数据集为基础,对所提出方法进行有效性验证,并与利用剪枝策略通过递归过程中不断减少模型中支持向量个数的稀疏化方法、基本最小二乘支持向量机以及标准支持向量机方法的性能进行对比.结果表明:基于核空间近似的最小二乘支持向量机稀疏化与标准最小二乘支持向量机相当;此外稀疏最小二乘支持向量机能够提高入侵检测响应速度.  相似文献   

10.
为了进一步提高短期风速预测的精度,分析了一种改进的风速预测方法.该方法考虑风速发生变化的极值点对总体预测误差的影响,以及预测曲线较实际曲线产生的滞后,分别对预测数据进行了极值点修正和偏移量处理.在对未来1 h风速进行预测时,相比粒子群优化(PSO)的最小二乘支持向量机(LS-SVM)模型、未经优化的LS-SVM模型及反向传播(BP)神经网络模型,所提出的模型具有较高的预测精度和运算速度.算例结果表明,改进的LS-SVM算法是进行短期风速预测的有效方法.  相似文献   

11.
12.
通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50组试样实例应用分析,显示了最小二乘支持向量机是一种较为有效的非线性建模方法,粒子群优化算法进行模型参数优化能够保证全局最优。验证结果表明模型的精度较高,有一定的实用价值。  相似文献   

13.
基于改进克隆选择算法的最小二乘支持向量机   总被引:1,自引:0,他引:1  
针对最小二乘支持向量机的参数选取问题,引入了克隆选择算法,提出了一种基于改进克隆选择算法的最小二乘支持向量机。同时根据最小二乘支持向量机的学习能力和泛化能力,在克隆选择算法的目标函数中加入两者的动态调节机制,这样改进的克隆选择算法在寻优过程中能够准确、快速地搜索到最小二乘支持向量机的最优参数。将本文模型用于乙烯裂解炉裂解深度值的学习和预测,经仿真实验表明:该预测模型的训练速度快,预测精度高。  相似文献   

14.
智能交通系统是目前世界上公认的解决城市交通拥堵问题的最佳措施,而实时准确地交通流量预测则是实现智能交通系统和智能交通诱导控制的重要依据.针对城市交通智能运输系统和交通流的特性,在多元线性回归、支持向量机和改进的BP神经网络等三种预测模型的基础上,提出了基于最小二乘支持向量机方法的交通流组合预测模型.实验预测结果表明该组合预测模型具有较高的预测精度,为交通流量提供了一个更好的预测模型.  相似文献   

15.
针对最小二乘支持向量机对训练样本内噪声比较敏感和其稀疏性差的问题,提出基于密度k-近邻向量的训练样本裁剪算法。对训练样本的各个样本类进行聚类,删除噪声数据,提高支持向量机的训练精度。通过计算出每个样本类的平均相似度和平均密度,得到样本的类相似度阈值;根据相似度阈值,将小于类相似度阈值的样本进行合并,减少训练样本总数。实验结果表明,该算法在保证训练精度的情况下,减少了支持向量数目。  相似文献   

16.
针对最小二乘支持向量机(LS-SVM)在进行回归预测时存在的稀疏性缺陷问题,采用固定尺度最小二乘支持向量机,即固定支持向量数量进行改进。仿真结果表明:固定尺度最小二乘支持向量机在训练各种样本数据集时,有效地避开了LS-SVM中的稀疏性问题,且训练速度快,同时具有良好的预测精度。  相似文献   

17.
介绍模拟电路故障诊断的现状及特点,提出一种基于最小二乘支持向量机的模拟电路故障诊断新方法.该方法可以对模拟电路有效地进行故障诊断,有较高的诊断效率.  相似文献   

18.
针对最小二乘支持向量机(LS-SVM)模型选择效果不稳定、易于过学习的问题,提出了一种基于黎曼度量的模型选择方法.首先,基于信息几何理论,证明了LS-SVM模型泛化能力受样本点二阶协变张量的影响;其次,进一步证明了同时最小化所有样本点的黎曼度量之和与权重向量的L2范数即可提高模型泛化能力;在此基础上,将LS-SVM模型选择转换为一个多目标优化问题,引入多目标粒子群算法选取最优超参数.采用仿真与真实UCI数据集对所提方法进行了对比实验,结果表明,与传统LS-SVM与基于留一法模型选择的LS-SVM相比,所提方法可以取得更小的泛化误差,同时数值稳定性更好.  相似文献   

19.
基于贝叶斯最小二乘支持向量机的时用水量预测模型   总被引:7,自引:0,他引:7  
为解决传统最小二乘支持向量机采用交叉验证确定模型参数耗时长的问题,提出利用贝叶斯置信框架推断最小二乘支持向量机的模型参数.通过第1级推断确定最小二乘支持向量机的权矢量w和偏置项b,通过第2级推断确定模型的超参数μ和ξ,通过第3级推断的模型对比自动选择核函数的系数.根据时用水序列具有周期性和趋势性的特点,建立了基于贝叶斯推断最小二乘支持向量机的时用水量模型.实例分析结果表明,与基于传统最小二乘支持向量机和基于BP网络的预测模型相比,基于贝叶斯最小二乘支持向量机的时用水量预测模型的建模速度更快,预测精度更高.  相似文献   

20.
结合相空间重构理论,提出运用最小二乘支持向量机(LSSVM)建立混沌时间序列的预测模型,并用粒子群优化(PSO)解决LSSVM参数寻优的问题.通过与RBF神经网络构建的预测模型相比较,计算预测模型的均方根误差来评价模型的性能.结果表明:采用PSO优化的LSSVM预测模型的预测精度更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号