共查询到19条相似文献,搜索用时 52 毫秒
1.
为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进行分析筛选,选出与光伏输出功率高度相关的因素作为输入变量,并采用经验模态分解(EMD)将光伏原始功率数据分解为多个特征模态函数(Intrinsic Mode Function,IMF).然后,将分解得到的IMF分量分别输入DELM预测模型,同时通过AO优化算法对DELM初始输入权重进行优化,从而提高深度极限学习机的泛化能力.最后,将各IMF分量预测结果叠加求和得到最终预测结果 .通过仿真结果表明,本文提出的EMD-AO-DELM预测模型,相较于单一DELM模型具有更好的预测精度,证明了所提方法的有效性. 相似文献
2.
3.
针对光伏发电系统在不同天气状况下发电功率预测精度不高的问题,在分析传统方法的基础上,提出一种无迹卡尔曼滤波神经网络光伏发电预测方法。该方法利用无迹卡尔曼滤波实时更新神经网络模型的权重,以直流电压和电流作为系统的输入,以有功功率和无功功率作为系统的输出,分别建立两个独立的双输入单输出功率预测模型。实验结果表明:所提出的方法对有功功率和无功功率的预测精度分别为97.3%和94.2%,并且对天气具有良好的鲁棒性。 相似文献
4.
光伏发电量受天气状况,光伏逆变器的质量,光伏组件的清洁度等诸因素影响,其中天气状况的时序性变化较大程度影响发电量。针对不同地区天气时序性变化导致的光伏发电量预测不准确等问题,提出了一种由卷积神经网络(CNN)和长短期记忆(LSTM)混合模型的光伏发电量预测方法,其中通过CNN建立地域之间的空间相关性,LSTM捕捉发电数据之间的时间依赖关系。对神木县红民发电厂和庆城县绿能动力发电厂的光伏发电数据进行测试,实验结果表明,本文所提出的CNN-LSTM混合神经网络方法在光伏发电量预测方面具有较高的准确性和稳定性,比LSTM神经网络模型精度提升4.3%左右。 相似文献
5.
轨道交通系统作为用电大户,将光伏发电系统接入轨道交通牵引供电系统不但可以降低交通系统的运营成本,而且可以很好地实现节能环保.但因光伏发电具有随机性、不确定性,将光伏发电直接接入轨道交通牵引供电系统,将会对轨道交通牵引供电系统带来一定的冲击,精确的光伏发电预测是减少光电并网冲击的有效解决方法.首先,采用自适应粒子群算法提... 相似文献
6.
针对光伏功率预测没有充分利用历史数据的问题,提出一种改进随机森林算法与长短期记忆神经网络相结合的预测方法(IRF-LSTM)。利用粒子群算法优化随机森林算法中的参数,并对原始气象数据进行特征选择。将特征选择后的结果作为输入,对预测模型输出的结果进行反归一化处理得到预测的功率序列。选用某光伏电站的实测数据对该算法模型进行预测,结果表明:该方法能充分利用预测时刻之前的气象时间序列,有效提高光伏功率预测精度,与RF-LSTM方法、单一LSTM方法相比具有更高的准确性,预测误差更小。 相似文献
7.
太阳能是未来清洁能源的关键,由于各种气象因素的影响,光伏发电通常不稳定.准确预测光伏发电功率的方法已成为解决光伏发电规划和建模问题的重要工具,可以减轻电力系统的负面影响,提高系统的稳定性.提出了一种基于离散小波变换(discrete wavelet transform,DWT)、卷积神经网络(convolutional... 相似文献
8.
针对并网光伏发电系统功率预测问题,提出一种基于自适应模糊时间序列法的并网光伏发电短期功率预测模型.根据光伏发电系统的历史发电数据,进行自适应算法处理,使数据结构与预测模型相适应,确定聚类数目、划分论域并定义论域区间.通过对历史数据进行模糊化处理,确定各模糊关系组,再计算各类模糊关系组的权重向量.按照模糊时间序列的方法进行光伏发电功率预测,并去模糊化得到实际预测结果.结果表明,对比时间序列预测法ARIMA模型,本文预测模型结果误差由13.66%减小到11.34%,并且在处理突变数据上有较大改进. 相似文献
9.
随着世界经济的绿色发展,大力发展可再生能源逐渐成为共识。可再生能源中太阳能的开发利用已成为当前能源转型中的重要领域,并在很多科技发达国家得到了较广泛的应用。高精度的光伏发电功率预测对电力系统的优化调度、安全运行十分重要。由于光照强度和能见度等会影响太阳能发电量的随机性,提出一种基于高斯混合模型的光伏发电功率概率区间预测方法,通过利用K-means算法将光伏发电历史数据按天气进行划分,以划分后的预测误差为统计样本,采用高斯混合模型进行拟合并使用期望最大化算法估计模型参数,通过计算指定置信水平下的置信区间进行光伏发电功率概率区间预测。仿真结果表明所提方法在进行光伏发电功率区间预测时的性能评价指标均优于典型单一分布模型,证明了所提方法的准确性和适用性。 相似文献
10.
短期光伏功率预测对于电网稳定运行具有重要意义。为了解决单一模型预测精度不佳的情况,提出了一种在Stacking集成学习框架下融合Bagging和Boosting算法的短期光伏功率预测模型。首先,引入Copula函数的相关性分析和轻量级梯度提升机的特征贡献度计算来进行特征筛选;然后,选取泛化性能较优的模型作为基学习器,并采用贝叶斯优化算法来对基学习器模型参数进行优化,最后,定义一个超级学习器,采用5折交叉验证,将基学习器与元学习器封装到超级学习器中训练。算例结果表明,在不同季节和不同天气条件下,Stacking模型相较于单一模型有着更高的预测精度。 相似文献
11.
针对现有电力电子电路故障状态预测技术的不足,提出将电路特征性能参数与粒子群算法(PSO)优化的径向基函数(RBF)神经网络相结合,对电力电子电路进行故障状态监测预测.以电源电路中Buck电路为例,选择电路输出电压作为监测信号,提取输出电压平均值及纹波电压值作为电路特征性能参数,并利用改进后的RBF神经网络实现状态预测.结果表明,利用PSO改进后的RBF神经网络对电路输出平均电压和纹波电压的预测比单纯RBF神经网络预测的结果更加精准,能够跟踪电源电路状态特征性能参数的变化趋势,有效实现电力电子电路状态监测和预测. 相似文献
12.
为提高飞机上作动系统的功率预测精度,建立了改进的多变量灰色神经网络预测模型。考虑了对系统功率需求有较大影响的相关因素,采用主成分分析法提取综合变量作为输入,在提升准确性的基础上有效减少了输入维数;在利用递增方式对初始值进行选择的过程中,引入粒子群优化算法快速求解最优初始值和背景值,模型预测的平均误差由13.35%降为7.53%;考虑到序列波动对预测精度的影响,采用BP神经网络对预测值进行误差修正,进一步将模型的平均预测误差降为4.07%。仿真实验表明,含主成分分析的改进灰色神经网络对飞机作动系统的功率有较高的预测精度,有利于飞机的电能调度。 相似文献
13.
本文提出了一种基于天气类型和季节类型,以布谷鸟算法优化小波神经网络的光伏发电短期预测方法.首先,分析气象因子的特征,并利用皮尔逊相关系数计算气象因子与光伏发电之间的相关性,作为预测神经网络的输入向量;其次,为了避免小波网络的结构不稳定以及由于局部极小值容易陷入预测结果误差太大的问题,提出了利用布谷鸟算法优化小波神经网络... 相似文献
14.
为了提高港口吞吐量预测模型的适用性,满足港口决策的需求,对传统时间序列BP神经网络预测模型进行改进,将未来三年的吞吐量作为输出层参数,以tansig函数和logsig函数为传递函数,建立了改进型时间序列BP神经网络预测模型,利用trainlm函数训练神经网络,预测未来三年的港口吞吐量。对深圳港集装箱吞吐量进行了预测,结果表明,改进型时间序列BP神经网络模型泛化能力更强,拟合精度更高,且避免了传统预测模型循环预测产生的误差叠加,具有较好的适用性。 相似文献
15.
选取2010-01-01—2010-10-31期间内,美元兑人民币的汇率基准价,以Morlet为母小波基函数,采用紧密结合的的小波神经网络对汇率基准价作非线性逼近,并在此小波神经网络基础上进行改进,并通过Matlab软件对原网络与改进网络的训练过程进行了数值仿真.仿真结果表明,改进网络模型对汇率基准价的预测是可行的,其预测精度更高. 相似文献
16.
针对预测数据噪声过大或超参数调整不当,导致随机森林回归(RFR)模型预测光伏发电功率精度不高的问题,提出一种基于变分模态分解(VMD)结合改进的粒子群(IPSO)优化随机森林回归(RFR)的光伏预测模型。该方法先用灰色关联度系数法(GRA)选取相似日,再使用VMD把相似日功率数据分解为一系列相对平稳的子模态,突出光伏发电功率的局部特征信息,降低数据的不稳定性,然后利用IPSO对RFR中超参数进行寻优,将优化后的IPSO-RFR模型对各个分量进行预测,最后将预测结果进行叠加重构。实例证明,该模型在晴天和阴雨天的预测平均绝对百分比误差分别为10.64%和5.42%,预测精度相对较高。 相似文献
17.
在对边坡进行稳定性评价时,传统的数值分析法计算量大,对经验的依赖性强,无法很好地反映边坡动态开放和非线性的特征.针对岩质边坡的上述特点,采用广义Hoek-Brown非线性破坏准则力学参数作为边坡稳定性的影响因素.利用改进后的蝙蝠算法(bat algorithm,BA)搜寻最优解来更新广义回归神经网络(generalized regression neural network,GRNN)的光滑因子,建立改进的BA-GRNN边坡稳定性预测网络.针对蝙蝠算法种群个体缺乏变异机制,在迭代过程中寻优能力下降的问题,引入交叉变异算子改进蝙蝠种群的多样性,使其保持持续优化能力.将改进BA-GRNN网络、BA-GRNN和GRNN3种网络得到预测结果进行对比,发现改进后的BA-GRNN预测网络对于边坡状态和安全系数预测精度更高,在边坡稳定性的预测方面有更好的适用性. 相似文献
18.
为解决蒸汽驱开发效果预测精度低和时间长的问题, 提出了一种改进人工蜂群算法和 RBF(Radial Basis
Function)神经网络相融合的预测方法。 该方法应用种群最优解修改雇佣蜂解和观察蜂解的搜索方程, 借鉴差
分进化算法思想, 完成对种群最优解和个体搜索解随机扰动, 采用混合编码优化 RBF 神经网络参数。 以辽河
油田齐 40 块为例进行了试算, 结果表明, 该方法对蒸汽驱开发效果预测具有较好的非线性拟合能力和较高的
预测精度。 相似文献
19.
近年来,中国煤炭等化石能源占终端能源消费的比例偏高,引起了严重的环境污染和能源资源的浪费,为了实现经济社会的绿色、可持续发展,中国提出了在终端能源消费环节实施电能替代的发展战略。因此,为了更精确地对电能替代潜力预测,基于改进的GRA-IPSO-BP模型,基于电能替代潜力影响因素的量化指标,构建了基于改进的GRA-IPSO-BP电能替代潜力预测模型。以浙江地区为例,拟合浙江地区电能替代电量的历史变化规律,并对浙江地区未来电能替代电量进行预测,研究方法有助于判断电能替代发展水平,有助于电能替代工作的推进。 相似文献