共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进行分析筛选,选出与光伏输出功率高度相关的因素作为输入变量,并采用经验模态分解(EMD)将光伏原始功率数据分解为多个特征模态函数(Intrinsic Mode Function,IMF).然后,将分解得到的IMF分量分别输入DELM预测模型,同时通过AO优化算法对DELM初始输入权重进行优化,从而提高深度极限学习机的泛化能力.最后,将各IMF分量预测结果叠加求和得到最终预测结果 .通过仿真结果表明,本文提出的EMD-AO-DELM预测模型,相较于单一DELM模型具有更好的预测精度,证明了所提方法的有效性. 相似文献
3.
4.
针对光伏发电系统在不同天气状况下发电功率预测精度不高的问题,在分析传统方法的基础上,提出一种无迹卡尔曼滤波神经网络光伏发电预测方法。该方法利用无迹卡尔曼滤波实时更新神经网络模型的权重,以直流电压和电流作为系统的输入,以有功功率和无功功率作为系统的输出,分别建立两个独立的双输入单输出功率预测模型。实验结果表明:所提出的方法对有功功率和无功功率的预测精度分别为97.3%和94.2%,并且对天气具有良好的鲁棒性。 相似文献
5.
光伏发电量受天气状况,光伏逆变器的质量,光伏组件的清洁度等诸因素影响,其中天气状况的时序性变化较大程度影响发电量。针对不同地区天气时序性变化导致的光伏发电量预测不准确等问题,提出了一种由卷积神经网络(CNN)和长短期记忆(LSTM)混合模型的光伏发电量预测方法,其中通过CNN建立地域之间的空间相关性,LSTM捕捉发电数据之间的时间依赖关系。对神木县红民发电厂和庆城县绿能动力发电厂的光伏发电数据进行测试,实验结果表明,本文所提出的CNN-LSTM混合神经网络方法在光伏发电量预测方面具有较高的准确性和稳定性,比LSTM神经网络模型精度提升4.3%左右。 相似文献
6.
光伏系统的发电量受到太阳辐照强度、温度、湿度和压强等多种天气变量的影响,变化复杂,具有间歇性和波动性.传统预测模型中需要以天气预报数据作为输入,但其与实际的天气变量存在一定偏差,这给预测结果带来了不可避免的误差.为了进一步提高预测精度,本文提出了天气变量预测数据到天气变量实际数据和天气变量实际数据到光伏系统发电量的双模... 相似文献
7.
轨道交通系统作为用电大户,将光伏发电系统接入轨道交通牵引供电系统不但可以降低交通系统的运营成本,而且可以很好地实现节能环保.但因光伏发电具有随机性、不确定性,将光伏发电直接接入轨道交通牵引供电系统,将会对轨道交通牵引供电系统带来一定的冲击,精确的光伏发电预测是减少光电并网冲击的有效解决方法.首先,采用自适应粒子群算法提... 相似文献
8.
针对光伏功率预测没有充分利用历史数据的问题,提出一种改进随机森林算法与长短期记忆神经网络相结合的预测方法(IRF-LSTM)。利用粒子群算法优化随机森林算法中的参数,并对原始气象数据进行特征选择。将特征选择后的结果作为输入,对预测模型输出的结果进行反归一化处理得到预测的功率序列。选用某光伏电站的实测数据对该算法模型进行预测,结果表明:该方法能充分利用预测时刻之前的气象时间序列,有效提高光伏功率预测精度,与RF-LSTM方法、单一LSTM方法相比具有更高的准确性,预测误差更小。 相似文献
9.
太阳能是未来清洁能源的关键,由于各种气象因素的影响,光伏发电通常不稳定.准确预测光伏发电功率的方法已成为解决光伏发电规划和建模问题的重要工具,可以减轻电力系统的负面影响,提高系统的稳定性.提出了一种基于离散小波变换(discrete wavelet transform,DWT)、卷积神经网络(convolutional... 相似文献
10.
针对光伏电站并网后发电功率波动较大影响电网合理调度及平稳运行的问题,提出一种基于EEMD-Hilbert变换及时频熵的神经网络光伏发电功率预测方法.将电站光伏发电功率历史值按晴天、雨天及多云天分类并分别用集合经验模态分解(ensemble empirical mode decomposition,EEMD)方法分解成若... 相似文献
11.
针对现有电力电子电路故障状态预测技术的不足,提出将电路特征性能参数与粒子群算法(PSO)优化的径向基函数(RBF)神经网络相结合,对电力电子电路进行故障状态监测预测.以电源电路中Buck电路为例,选择电路输出电压作为监测信号,提取输出电压平均值及纹波电压值作为电路特征性能参数,并利用改进后的RBF神经网络实现状态预测.结果表明,利用PSO改进后的RBF神经网络对电路输出平均电压和纹波电压的预测比单纯RBF神经网络预测的结果更加精准,能够跟踪电源电路状态特征性能参数的变化趋势,有效实现电力电子电路状态监测和预测. 相似文献
12.
为了提高港口吞吐量预测模型的适用性,满足港口决策的需求,对传统时间序列BP神经网络预测模型进行改进,将未来三年的吞吐量作为输出层参数,以tansig函数和logsig函数为传递函数,建立了改进型时间序列BP神经网络预测模型,利用trainlm函数训练神经网络,预测未来三年的港口吞吐量。对深圳港集装箱吞吐量进行了预测,结果表明,改进型时间序列BP神经网络模型泛化能力更强,拟合精度更高,且避免了传统预测模型循环预测产生的误差叠加,具有较好的适用性。 相似文献
13.
选取2010-01-01—2010-10-31期间内,美元兑人民币的汇率基准价,以Morlet为母小波基函数,采用紧密结合的的小波神经网络对汇率基准价作非线性逼近,并在此小波神经网络基础上进行改进,并通过Matlab软件对原网络与改进网络的训练过程进行了数值仿真.仿真结果表明,改进网络模型对汇率基准价的预测是可行的,其预测精度更高. 相似文献
14.
针对预测数据噪声过大或超参数调整不当,导致随机森林回归(RFR)模型预测光伏发电功率精度不高的问题,提出一种基于变分模态分解(VMD)结合改进的粒子群(IPSO)优化随机森林回归(RFR)的光伏预测模型。该方法先用灰色关联度系数法(GRA)选取相似日,再使用VMD把相似日功率数据分解为一系列相对平稳的子模态,突出光伏发电功率的局部特征信息,降低数据的不稳定性,然后利用IPSO对RFR中超参数进行寻优,将优化后的IPSO-RFR模型对各个分量进行预测,最后将预测结果进行叠加重构。实例证明,该模型在晴天和阴雨天的预测平均绝对百分比误差分别为10.64%和5.42%,预测精度相对较高。 相似文献
15.
为解决新能源接入大电网带来的能源损耗问题,进行常规能源发电机组的快速经济调度是一种有效措施。针对存在多种常规能源的电力系统,建立了考虑传输损耗的电力系统经济调度问题模型,基于增广的Lagrange-Hopfield 神经网络优化算法,引入乘子神经元传输速率参数,提出了改进的增广Lagrange-Hopfield 神经网络算法。从理论上证明了该算法的收敛性,以及收敛的快速性。以某一项目为例,选取不同的传输速率参数,验证了改进的增广Lagrange-Hopfield 神经网络算法受传输速率参数的影响,并且工程可行,收敛快速。 相似文献
16.
由于GDP时间序列具有线性和非线性的特征,神经网络(NN)方法和集成预测方法等在预测分析时可能产生较大误差.以GDP的年增长率作为神经网络的输入,建立基于BPNN的GDP预测模型.利用此改进BPNN模型对我国的GDP进行预测和验证,并分别与ARIMA-BP集成模型及BPNN模型进行比较.结果表明,改进的BPNN模型预测... 相似文献
17.
基于改进神经网络的水泥路面使用性能预测模型 总被引:5,自引:0,他引:5
为了克服传统水泥路面使用性能预测方法的缺陷和误差反向传播(BP)神经网络的不足,利用动量方法改进了BP神经网络收敛性,建立了水泥路面使用性能预测模型.采用广东水泥路面调查数据对模型进行了训练和验证,并对模型训练方法进行了优化.分析表明,该模型具有较好的实用性和预测精度. 相似文献
18.
《四川理工学院学报(自然科学版)》2015,(6):52-57
针对城市短时交通流量具有复杂性和非线性等特点,提出了基于人工蜂群算法(ABC)优化小波神经网络对短时交通流量预测分析模型。以小波神经网络(WNN)为基础,将以前城市采集的交通流量作为预测样本,通过人工蜂群算法优化WNN网络结构、权值和阈值,并建立城市短时交通流量预测数学模型。实验仿真表明,所提出的算法预测结果比仅使用WNN算法以及粒子群优化BP神经网络算法效率更高,是一种有效可靠的交通流量预测方法。 相似文献
19.
交通流预测对于减少拥堵、节能减排具有重要意义.基于卷积神经网络的预测方法普遍采用梯度下降法训练神经网络,缺点在于预测对网络初始参数敏感.本文采用遗传算法对卷积神经网络的网络参数进行确定从而对短时交通流进行预测.首先,根据交通流数据的特点,设计了适用于交通流预测的卷积神经网络结构;然后,确定卷积神经网络的卷积核与全连接层参数的解空间;随后,采用遗传算法对卷积神经网络参数在可行域中通过选择、交叉、变异三种遗传操作不断迭代搜索得到最优参数解.仿真结果表明,与梯度下降法训练的卷积神经网络相比,该方法拥有更高的预测精度. 相似文献