首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
利用简洁初等方法,证明了丢番图方程x2±y4=z6,x2+y6=z4,x4±4y4=z3,x4-y4=2z3均无正整数解,方程x4+y4=2z3,(x,y)=1,仅有正整数解x=y=z=1.  相似文献   

2.
利用初等方法及Fermat无穷递降法,获得了丢番图方程x4±5x2y2+5y4=z2与x4±10x2y2+5y4=z2的正整数解公式.  相似文献   

3.
关于丢番图方程x6±y6=Dz2   总被引:24,自引:3,他引:21  
设正整数D无平方因子且不被 6k +1形素数整除 ,证明了丢番图方程x6±y6=Dz2 ,(x ,y) =1除开x6±y6= 2z2 仅有解x=y =z=1外 ,其他情形均无正整数解 ;同时获得了方程x6±y6=PDz2 (P为奇素数 )无正整数解的一些判据  相似文献   

4.
不久前,我们证明了方程(1)x~2=y~2+1,xy≠0,对于整数n>1,除开n=3,x=±3,y=2外,没有其他的解。解决了这一久未解决的问题,可以用来推出下列结果:  相似文献   

5.
设正整数D无平方因子且不被6k+1形素数整除,证明了丢番图方程x6±y6=Dz2,(x,y)=1除开x6±y6=2z2仅有解x=y=z=1外,其他情形均无正整数解;同时获得了方程x6±y6=PDz2(P为奇素数)无正整数解的一些判据。  相似文献   

6.
关于丢番图方程x4±4y8=pz4   总被引:4,自引:0,他引:4  
利用初等数论及Fermat无穷递降法,证明了丢番图方程x8-4y4=pz4、x4-4y8=pz8、64x8±y4=pz4均无正整数;方程x4+4y8=pz4除开p=5仅有解x=y=z=1外,其他情形均无正整数解,同时还解决了方程x8+my4=z4在m=±p,±2p,±4p,±8p的求解问题.  相似文献   

7.
关于丢番图方程x4±4y8=pz4   总被引:4,自引:2,他引:2  
利用初等数论及Fermat无穷递降法 ,证明了丢番图方程x8- 4y4 =pz4 、x4 - 4y8=pz8、6 4x8± y4 =pz4 均无正整数 ;方程x4 +4y8=pz4 除开 p =5仅有解x=y =z=1外 ,其他情形均无正整数解 ,同时还解决了方程x8+my4 =z4 在m =± p ,± 2 p ,± 4p ,± 8p的求解问题  相似文献   

8.
关于丢番图方程x4±y6=z2与x2+y4=z6   总被引:16,自引:0,他引:16  
利用初等数论方法证明了丢番图方程x4±y6=z2与x2+y4=z6均没有适合(x,y) =1的正整数解.  相似文献   

9.
对于方程 M( x,y) dx+N( x,y) dy=0为恰当方程的充要条件 :       M y= N x由曲线积分中的格林 ( Green)公式知 ,对于积分∫Mdx+Ndy当 M y= N x时 ,积分与路径无关 ,只与起点 A( x0 ,y0 ) ,终点 B( x,y)有关 :u( x,y) =∫( x,y)( x0 ,y0 ) Mdx+Ndy=∫xx0 M( x,y0 ) dx+∫yy0 N( x,y) dy  方程的通解为 :u( x,y) =C( C为任意常数 )例 1 :求解方程 ( 5x4 +3 xy2 -y3) dx+( 3 x2 y-3 xy2 +y3) dy=0解 : M y=6xy-3 y2 = N x 方程为恰当方程   u( x,y) =∫( x,y)( 0 ,0 ) ( 5x4 +3 xy2 -y3) dx+( 3 x2 y-3 xy2 +y3) dy=∫x0…  相似文献   

10.
讨论了Diophantine方程x2+2y2=zn在xy≠0,(x,y)=1时有解的充分必要条件及用代数数论的方法给出(x,y)=1,n≥2时方程整数解的一般公式.  相似文献   

11.
利用初等方法及Fermat无穷递降法 ,获得了丢番图方程x4 ± 5x2 y2 5y4 =z2 与x4 ± 10x2 y2 5y4 =z2 的正整数解公式  相似文献   

12.
近年来关于Painlev啨方程解的渐近性态有了许多结果,但对第四类Painlev啨  y″=y′22y+32y3+4xy2+2(x2-α)y+βy方程解的渐近性态的研究并不多.给出一类振荡渐近解的表达形式:  y=-23x+Bcos(33x2+bln|x|+c)+O(|x|-1),x→±∞.  相似文献   

13.
试论非多项式方程的重根   总被引:1,自引:1,他引:0  
一、来自中学数学教学的问题中学数学教学中常遇到方程的重根问题.对于多项式方程,其重根和根的重数概念以及相应的判别方法等,在大学《高等代数》课程中早有定论,也已为广大中学教师所熟悉.但我们在教学中还会遇到一个非多项式方程是否有重根的问题,比如下面诸例:例1 在复数集C中解方程xx2+1+x2+1x=52.(高中代数下册217页16(6)题)一般解法是:令x2+1x=y,得1y+y=52,解得y=2和y=12.将y=12代回x2+1x=y中可解出x=1±15i2;将y=2代回x2+1x=y中,去分母得2x=x2+1,即(x2-1)2=0,从而x=1,最后经检验知x=1和x=1±15i2均为原方程的根.问题:x=1是原方程…  相似文献   

14.
设p>3是素数,该文运用数论方法证明了方程x6+y6=3pz2,x6±y6=6pz2均无正整数解,给出了方程x6-y6=3pz2有解的必要条件,并获得了相应的通解公式.  相似文献   

15.
周科 《广西科学》2005,12(4):255-258
设p为素数,利用Fermat无穷递降法,研究方程x4±3px2y2+3p2y4=z2与x4±6px2y2-3p2y4=z2正整数解的存在性,证明该方程在p≡5(mod 12)时均无正整数解,在p≡11(mod 12)时有解且有无穷多组正整数解,获得方程无穷多组正整数解的通解公式和方程的部分正整数解.  相似文献   

16.
关于丢番图方程x6±y6=pDz2   总被引:1,自引:0,他引:1  
设p>3是素数,证明了丢番图方程x6±y6=6pz2,x6+y6=3pz2和x6-y6=2pz2均无正整数解;方程x6+y6=pz2和x6+y6=2pz2在p1(mod24)时均无正整数解;方程x6-y6=pz2在p1,7,19(mod24)时无正整数解;方程x6-y6=3pz2在p(≡/)1,19(mod24)时无正整数解;并且获得了以上方程在p≡1,7,19(mod24)时的全部正整数解通解公式, 从而从正面支持了广义Fermat猜想和Tijdeman猜想.  相似文献   

17.
关于一个丢番图方程x~3+1=65y~2   总被引:2,自引:1,他引:1  
利用递归数列,同余式证明了丢番图方程x3+1=65y2,仅有整数解(x,y)=(-1,0)(4,±1).  相似文献   

18.
关于不定方程x~3+8=Dy~2   总被引:2,自引:2,他引:0  
首先利用递归数列的方法证明了不定方程x3+1=158y2仅有整数解(x,y)=(-1,0),(293,±399)。进而证明了不定方程x3+8=79y2仅有整数解(x,y)=(-2,0),(586,±1596)。  相似文献   

19.
本文讨论了丢番图方程(1)的本原解的公式,介绍了费与(Fermat)无穷递降法,证明了丢番图方程x4±4y4=z2,x4+y2=z4无xyz≠0的解,并讨论了几个特殊的丢番图方程的解。  相似文献   

20.
证明了丢番图方程|-x4+6x2y2+3y4|=2z2,(x,y)=1的全部正整数解为(Ⅰ)若z>2y2,则x=|m21n21-6m22n22|,y=m21m22+2n21n22,z=z(±)=(±)[24m21m22n21n22-2(|m21m22-2n21n22|±2m1m2n1n2)2],其中m2,n1满足-n41+6m22n21+3m42=2(D/2)2,2(×)n1m1m2;z=z-时,n2,m1满足(D-4m2m1)n2=m1(m22-n21)和(D+4m2n1)m1=2n2(n21+3m22),z=z+时,n2,m1满足n2(D±4m2n1)=(m22-n21)m1和m1(D(±)4m2n1)=2n2(3m22+n21).(Ⅱ)若z<2y2,则x=|m21n21-6m22n22|,y=m21m22+2n21n22,z=±z0,z0=24m21m22n21n22-2(|m21m22-2n21n22|±2m1m2n1n2)2,其中m2,n1满足-n41+6m22n21+3m42=2(D/2)2,2(×)n1m1m2;z=z0时,n2,m1满足n2(D±4m2m1)=(m22-n21)m1和m1(D(±)4m2n1)=2n2(3m22+n21),z=-z0时,n2,m1满足(D(±)4m2n1)n2=m1(m22-n21)和(D±4m2n1)m1=2n2(n21+3m22).从而更正了梁莉莉,王云葵[1]关于上述方程仅有正整数解(x,y,z)=(1,1,2)的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号