首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以普通氧化物烧结方法(一步法)和先驱体法(两步法),在1200℃~1350℃的温度下,制备了(1-x)Pb(Sc0.5Ta0.5)O3-xPb(Zr0.52Ti0.48)O3(以下简称PSTZT)弛豫铁电陶瓷.实验发现在所有掺杂成分中,各种烧结温度都得到了钙钛矿含量很高(几乎100%)的PSTZT陶瓷样品.SEM分析表明,PSTZT陶瓷晶体颗粒饱满、晶界明显,形状比较有规则;从介电性能和压电性能分析可以看出,两种工艺制备的PSTZT陶瓷样品的电学性能没有明显的区别.  相似文献   

2.
(Bi0.5 Na0.5)TiO3-BaTiO3系陶瓷的介电弛豫性能   总被引:3,自引:0,他引:3  
采用传统压电陶瓷固相合成法制得了纯钙钛矿相的(1-x)(Bi0 5Na0.5)TiO3-xBaTiO3(J=0.02,0.04,0.06,0.08,0.10)(简写作BNBT)系无铅压电陶瓷研究了1kHz条件下室温到400℃的温度范围内BNBT试样的介电温谱以及3种不同频率下(1、10、100kHz)BNBT-6试样的介电温谱,发现材料在研究组成范围内均为弛豫型铁电体。采用HRTEM研究了该系统的畴结构,表明BNBT钙钛矿结构铁电体的介电性能与复合离子的有序无序排列密切相关,纳米尺度有序微畴对介电弛豫起着重要作用。  相似文献   

3.
将具有良好热释电性的Pb(Sc0.5Ta0.5)O3(PST)与Pb(Zr0.52Ti0.48)O3(PZT)复合,制备出了具有钙钛矿结构的(1-x)PST-xPZT(PSTZT)驰豫铁电陶瓷.对极化后的PSTZT样品进行了小信号交流阻抗谱测试,发现PSTZT的交流阻抗谱主要由压电振子谐振圆和部分陶瓷晶粒晶界圆组成.从前者获得了PSTZT全部压电陶瓷参数,从后者推出了晶粒是电阻塞产生的主要原因.  相似文献   

4.
采用传统固相法制备了新型(1-x)B i0.5(Na0.8K0.2)0.5TiO3-x(B i0.1La0.9)FeO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了该陶瓷的晶体结构、表面形貌、压电和介电性能.研究结果表明,在所研究的组成范围内陶瓷材料均能形成纯的钙钛矿固溶体.压电性能随x的增加先增加后减少,在x=0.005时压电常数及机电耦合系数达到最大值(d33=149pC/N,kp=0.270).  相似文献   

5.
文章运用准同型相界线性叠加原理,设计了无铅压电陶瓷三元体系(1-x)(0.968Bi0.5Na0.5TiO3-0.032BaTiO3)-xBi0.5K0.5TiO3(简称BNBKT100x),采用传统压电陶瓷固相合成法制备BNBKT100x样品,XRD结果表明,所制备的陶瓷样品为纯的钙钛矿相,其准同型相界在0.08x0.10范围内;详细研究了BNBKT100x样品在准同型相界附近的介电、压电性能和介电弛豫特性。BNBKT100x三元体系无铅压电陶瓷在整个实验组分范围内均为弛豫铁电体,最好的电性能出现在准同型相界附近的组成BNBKT9,其介电和压电性能参数为d33=162 pC/N,kp=31%,3Tε3=2 080,tanδ=4%,Qm=119。  相似文献   

6.
采用传统陶瓷烧结工艺制备了(K0.44Na0.5Li0.06)(Nb0.94Sb0.06)O3无铅压电陶瓷,研究了不同烧结温度对(K0.44Na0.5Li0.06)(Nb0.89Ta0.05Sb0.06)O3陶瓷的晶相、微观形貌、压电、介电和铁电性能的影响.研究结果表明:在不同烧结温度下,XRD衍射分析表明陶瓷样品都形成了钙钛矿的正交相结构,但具有不同的SEM形貌和电学性能.在烧结温度1 060℃时晶粒发育比较完全,致密性较高;且陶瓷具有最佳的电学性能:d33=233 pC/N,k p=49%,εr=1 172和P r=24μC/cm2.  相似文献   

7.
高性能、高居里温度压电陶瓷研究进展   总被引:3,自引:0,他引:3  
随着现代科学技术的发展,迫切需要能够在更高的温度下工作的新型压电陶瓷材料及其器件.作者介绍了高性能、高居里温度压电陶瓷材料的研究进展,认为高性能、高居里温度压电陶瓷的研究应当着重在陶瓷体系的MPB附近进行研究,在(1-x)Bi(Me)O3-xPbTi O3(Me=Sc,Ta,Ga,Yb,In)基和(1-x)Li NbO3-x(Na,K)(NbyTa1-y)O3基陶瓷材料体系中可望发现新的高性能、高居里温度的压电陶瓷体系.  相似文献   

8.
在钽钪酸铅中加入钛酸铅,形成具有复合钙钛矿结构的钽钪酸铅-钛酸铅固溶体(1-x)Pb(Sc1/2Ta1/2)O3-xPbTiO3(简称PSTT(x)),可有效提高钽钪酸铅材料体系的居里点、降低其制备温度,从而扩大PST体系的应用范围.用常规氧化物合成电子陶瓷方法制备了钽钪酸铅-钛酸铅弛豫铁电陶瓷,采用XRD,SEM等分析技术,研究了PSTT(x)陶瓷的结晶特性和微观形貌,测试了PSTT(x)陶瓷的介电性能.实验结果表明,利用常规氧化物合成电子陶瓷方法可以合成钙钛矿结构的PSTT(x)陶瓷,其钙钛矿相的含量可达到90%以上,最高达100%.SEM分析表明,PSTT(x)陶瓷的晶粒饱满、晶界清晰.PSTT(x)陶瓷的热滞温度随x的不同,大致在6~12℃之间变化;PSTT(x)陶瓷的居里常数C*为3.7~8.3×106 K2.  相似文献   

9.
Na0.5Bi0.5TiO3-BaTiO3无铅压电陶瓷制备及性能   总被引:1,自引:0,他引:1  
研究了不同烧结制度下的NBBT6陶瓷的致密度、介电和压电性能.870℃左右预烧,可以得到致密且压电和介电性能较好的陶瓷(d33=107 pC/N.∈r=750,tanδ为3.23%).通过相应的粒度分析可知,提高预烧温度对粒度的影响不太大,但可用于湿法制备工艺中的原材料制备,解决湿法工艺中材料易被极性水分子解离而影响材料组分的问题.加入少量的BaTiO3到NBT中形成NBT-BT的固溶体,通过对压电介电性能及XRD的分析可知.当质量分数x=0.06时.(1-x)Na0.5Bi0.5TiO3-xBaTiO3晶体结构出现由三方相到四方相的转变,此时的性能达到最大值(d33=114 pC/N,∈r=1 173.tanδ为3.4%).  相似文献   

10.
利用传统陶瓷工艺制备了MnO2(0~0.4wt%)掺杂[Bi0.5(Na1-xAgx)0.5]1-yBayTi O3(x=0.06,y=0.06)无铅压电陶瓷,研究了掺杂对该体系陶瓷的结构、压电和介电性能的影响.结果表明,陶瓷的压电常数d33随锰掺杂量增加而减小;适量锰离子的引入可降低介电损耗tgδ,提高机械品质因数Qm.当锰掺杂量达到0.4wt%时,陶瓷的压电性能大幅度降低.锰含量为0.15wt%时该体系陶瓷具有较好的性能压电常数d33=160pC/N,机电耦合系数kp=34%,kt=52%,介电常数εr=804,机械品质因数Qm=163,介电损耗tgδ=2.0%.  相似文献   

11.
以LaNiO3做缓冲层,用射频磁控溅射法在SiO2/Si(100)衬底上制备出[0.9Pb(Sc0.5Ta0.5)O3-0.1PbTiO3/0.55Pb(Sc0.5Ta0.5)O3-0.45PbTiO3]4铁电多层薄膜.采用两步法在峰值温度800 ℃对薄膜进行退火.通过x射线衍射分析了薄膜的物相结构,通过电滞回线和漏电流曲线对薄膜的铁电性能进行了测量.研究发现,薄膜展现出高度(100)取向的钙钛矿结构和增强的铁电性,其剩余极化2Pr=26.2 μc/cm2,矫顽场2Ec=53.9 kV/cm,100 kV/cm下漏电流密度为1.87×10-4A/cm2.分析了铁电性增强和漏电流增大的可能原因.  相似文献   

12.
采用传统陶瓷烧结工艺制备了(K0.44Na0.5Li0.06)(Nb0.89Ta0.05Sb0.06)O3+x(质量分数)Ga2O3无铅压电陶瓷,研究了掺杂不同Ga2O3含量对(K0.44Na0.5Li0.06)(Nb0.89Ta0.05Sb0.06)O3陶瓷的晶相、微观结构和电学性能的影响.研究结果表明:x在0~2变化范围内,陶瓷为单一四方相的钙钛矿结构,具有良好的铁电性能;随着体系中Ga2O3含量的增加,陶瓷的最佳烧结温度逐渐降低;Ga2O3的掺杂导致陶瓷晶粒变小,陶瓷的铁电四方相-顺电立方相的转变温度即居里温度TC有少许上升,但陶瓷的压电性能明显劣化.  相似文献   

13.
采用传统固相反应法制备四元系0.02Pb(Zn1/3Nb2/3)O3-0.50Pb(Ni1/3Nb2/3)O3-0.48Pb(ZrxTi1-x)O3(0.29≤x≤0.34)陶瓷.观察样品的晶相结构和显微结构,测试压电性能和介电性能.随着Zr/Ti比的增大,晶相从四方相向三方相转变.发现准同型相界位置在x=0.32附近.1 240℃烧结的0.02PZN-0.50PNN-0.48PZ32T陶瓷展现了良好的压电性能,压电常数d33为715 p C/N,机电耦合系数kp为0.541,剩余极化强度Pr为25.5μC/cm2,矫顽场强Ec为5.6 k V/cm.新的压电材料适合高性能压电器件应用,且简单的制备方法给生产带来极大便利.  相似文献   

14.
钛酸铋钠基陶瓷中含有易挥发性Na+,为研究Na+含量对钛酸铋钠基陶瓷结构和电学性能的影响,采用传统固相反应法制备了(Na0.5Bi0.5)0.94Ba0.06TiO3+xwt.%Na2CO3(记为BN6BTxNa,x=0、0.5、1、2)无铅压电陶瓷。研究了添加过量Na2CO3对(Na0.5Bi0.5)0.94Ba0.06TiO3陶瓷的烧结性能、晶体结构、显微结构、压电性能、介电性能和铁电性能的影响。发现在1 180℃烧结的陶瓷均具有纯钙钛矿结构,陶瓷的晶粒尺寸随Na2CO3含量不同而改变。钛酸铋钠基陶瓷的结构和电学性能与Na+含量密切相关。研究结果表明:1 180℃烧结的x=1组分陶瓷具有最大的体密度(5.73g/cm3),最大的压电常数(88pC/N),较高的剩余极化强度(25.5μC/cm2)和较低的矫顽场(27.5kV/cm)。  相似文献   

15.
采用传统的电子陶瓷制备方法,以氧化硼(B2O3)为掺杂剂,制备了Pb0.925Ba0.075Nb2O6-0.5wt.%TiO2-xwt.%B2O3(PBNT-xB)(x=0、0.02、0.04、0.06、0.08)压电陶瓷。详细研究了B3+离子掺杂对偏铌酸铅(PbNb2O6)基陶瓷的晶格结构、显微结构、介电及压电性能的影响。结果表明,适量B2O3有助于提高陶瓷的致密度,陶瓷的晶粒尺寸和晶格参数随着B2O3掺杂量的不同而改变。B2O3的掺杂量为x=0.04且在1 260℃烧结的陶瓷表现出优异的介电及压电性能。  相似文献   

16.
在钽钪酸铅中加入钛酸铅,形成具有复合钙钛矿结构的钽钪酸铅 钛酸铅固溶体(1-x)Pb(Sc1/2Ta1/2)O3 xPbTiO3(简称PSTT(x)),可有效提高钽钪酸铅材料体系的居里点、降低其制备温度,从而扩大PST体系的应用范围.用常规氧化物合成电子陶瓷方法制备了钽钪酸铅 钛酸铅弛豫铁电陶瓷,采用XRD,SEM等分析技术,研究了PSTT(x)陶瓷的结晶特性和微观形貌,测试了PSTT(x)陶瓷的介电性能.实验结果表明,利用常规氧化物合成电子陶瓷方法可以合成钙钛矿结构的PSTT(x)陶瓷,其钙钛矿相的含量可达到90%以上,最高达100%.SEM分析表明,PSTT(x)陶瓷的晶粒饱满、晶界清晰.PSTT(x)陶瓷的热滞温度随x的不同,大致在6~12℃之间变化;PSTT(x)陶瓷的居里常数C 为3.7~8.3×106K2.  相似文献   

17.
通过优化B位离子氧化物共烧方法,成功制备出具有纯钙钛矿结构的Pb(Yb1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3(PYN-PZN-PT)三元铁电固溶体陶瓷,有效地抑制PZN基陶瓷制备过程中烧绿石相的形成.选取(0.48-x)PYN-0.52PZN-xPT(x=0.24~0.28),对三元体系的相结构、铁电、压电和介电性能进行了研究.结果表明:烧结得到的陶瓷致密均匀无杂相,晶粒尺寸2~4μm;随着PT含量的增加,物相经历了从三方相到三方和四方相共存的准同型相界(MPB)、再到四方相的结构演变;MPB附近的组分具有优异的性能,性能最好的组分是0.21PYN-0.52PZN-0.27PT,其压电系数d33=550pC/N,室温介电常数ε′=2 070,矫顽场Ec=19.9kV/cm,居里温度TC=260℃;陶瓷样品的介电温谱表现出介电弥散以及介电峰的展宽等类弛豫体的特点.  相似文献   

18.
利用企业的电子陶瓷工艺制备了ZnO掺杂Bi0.5(Na1-x-yLixKy)0.5Ti O3无铅压电陶瓷,研究了ZnO掺杂对该体系陶瓷的介电压电性能与微观结构的影响.X射线衍射结果表明,当ZnO含量小于0.5wt%时,掺杂的ZnO扩散进入了Bi0.5(Na1-x-yLixKy)0.5Ti O3钙钛矿结构的晶格;SEM观察结果表明,少量的ZnO掺杂可以改善该陶瓷的微结构;介电压电性能研究结果表明,当掺杂量较少时,ZnO对该体系陶瓷的介电压电性能有一定的改善,但不明显.  相似文献   

19.
采用传统陶瓷生产工艺制备了新型(Bi0.5Na0.5)0.94(Ba0.5Sr0.5)0.06Ti O3 x(wt%)MnO2体系无铅压电陶瓷,研究了陶瓷的晶相结构、表面形貌、压电和介电性能.结果表明,该体系具有单一的钙钛矿结构;具有良好的压电性能,其压电常数d33为101pC/N,机电耦合系数kp为0.21,机械品质因素Qm为192,且具有较低的介质损耗(tanδ=0.0217).在1200℃,2h的烧结条件下,能够获得致密的陶瓷体;MnO2的添加量对晶粒生长具有一定的限制作用,随着Mn元素的含量增加,晶粒尺寸变大;与不添加Mn元素的陶瓷样品相比,添加少量Mn元素可以使晶粒尺寸变小,且更均匀.  相似文献   

20.
采用传统压电陶瓷工艺制备了(1-x)B i0.5(Na0.8K0.2)0.5TiO3-xNaSbO3无铅压电陶瓷,利用XRD、SEM等测试技术表征了陶瓷的晶相结构和表面形貌,利用一些电学仪器测试了其介电和压电性能.结果表明,该体系陶瓷具有单相钙钛矿结构,适量的NaSbO3掺杂可以提高该陶瓷的致密性.在室温下,当掺杂量为0.5%时,该体系表现出较好的压电性能:压电常数d33和机电耦合系数kp分别达到107pC/N和0.209;当掺杂量为0.7%时,εr和tanδ分别为1 551和0.05.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号