首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Ceppellini  G Frumento  G B Ferrara  R Tosi  A Chersi  B Pernis 《Nature》1989,339(6223):392-394
T cells recognize protein antigens as fragments (peptides) held in a defined binding site of class I or class II major histocompatibility (MHC) molecules. The formation of complexes between various immunologically active peptides and different MHC molecules has been demonstrated directly in binding studies between the peptides and solubilized, purified molecules of class II MHC. Studies with intact cells, living or fixed, have not directly demonstrated the binding of the peptides to MHC molecules on antigen-presenting cells, but the formation of such complexes has been shown indirectly through the capacity of antigen-presenting cells to stimulate specific T cells. Here we report evidence that supports directly the binding of radiolabelled influenza matrix peptide 17-29 to products of the human class II MHC locus HLA-DR, on living homozygous B-cell lines, and we show that the kinetics of such binding is much faster with living cells than with fixed cells. Furthermore, whereas the peptide reacts with HLA-DR molecules of all alleles, it binds preferentially to DR1, the restricting element in antigen presentation.  相似文献   

2.
Physical association between MHC class I molecules and immunogenic peptides   总被引:5,自引:0,他引:5  
Antigenic peptides are presented to T lymphocytes by major histocompatibility complex (MHC) molecules. The binding of peptides to MHC class II molecules has been demonstrated directly, and is found to correlate with the ability of specific class II alleles to restrict the T-cell response to specific peptides. By comparison, a direct demonstration of a physical association between antigenic peptides and MHC class I molecules has proved difficult. A recent report shows that it is possible, however, and the three-dimensional structure of a class I MHC molecule illustrates the site where such binding must occur. Here we describe a simple assay which measures the binding of radiolabelled MHC class I molecules to peptides bound to a solid phase support. We find that class I molecules bind specifically to peptides known to be antigenic for class I-restricted cytotoxic T lymphocytes. Peptides which are recognized by cytotoxic T lymphocytes bind not only to the restricting MHC class I molecule but also to other class I molecules. Our results suggest that quantitative differences in the peptide/MHC class I interaction may influence the-pattern of MHC restriction observed in vivo.  相似文献   

3.
P A Roche  P Cresswell 《Nature》1990,345(6276):615-618
Class II major histocompatibility complex (MHC) molecules are heterodimeric cell surface glycoproteins which bind and present immunogenic peptides to T lymphocytes. Such peptides are normally derived from protein antigens internalized and proteolytically degraded by the antigen-presenting cell. Class I MHC molecules also bind immunogenic peptides, but these are derived from proteins synthesized within the target cell. Whereas class I molecules seem to bind peptides in the endoplasmic reticulum, class II molecules are thought to bind peptides late in transport. Intracellular class II molecules associate in the endoplasmic reticulum with a third glycoprotein, the invariant (I) chain, which is proteolytically removed before cell surface expression of the alpha beta class II heterodimer. It has been suggested that the I chain prevents peptides from associating with class II molecules early in transport. Preventing such binding until the class II molecules enter an endosomal compartment could maintain the functional dichotomy between class I and class II MHC molecules. We have examined the ability of I chain-associated HLA-DR5 molecules to bind a well characterized influenza haemagglutinin-derived peptide (HAp). The results show that whereas mature HLA-DR alpha beta dimers effectively bind this peptide, the I chain-associated form does not.  相似文献   

4.
Major histocompatibility complex (MHC) class I molecules bind and deliver peptides derived from endogenously synthesized proteins to the cell surface for survey by cytotoxic T lymphocytes. It is believed that endogenous antigens are generally degraded in the cytosol, the resulting peptides being translocated into the endoplasmic reticulum where they bind to MHC class I molecules. Transporters containing an ATP-binding cassette encoded by the MHC class II region seem to be responsible for this transport. Genes coding for two subunits of the '20S' proteasome (a multicatalytic proteinase) have been found in the vicinity of the two transporter genes in the MHC class II region, indicating that the proteasome could be the unknown proteolytic entity in the cytosol involved in the generation of MHC class I-binding peptides. By introducing rat genes encoding the MHC-linked transporters into a human cell line lacking both transporter and proteasome subunit genes, we show here that the MHC-encoded proteasome subunit are not essential for stable MHC class I surface expression, or for processing and presentation of antigenic peptides from influenza virus and an intracellular protein.  相似文献   

5.
T cells recognize foreign protein antigens in the form of peptide fragments bound tightly to the outer aspect of molecules encoded by the major histocompatibility complex (MHC). Most of the amino-acid differences that distinguish MHC allelic variants line the peptide-binding cleft, and different allelic forms of MHC molecules bind distinct peptides. It has been demonstrated that peptide-binding to MHC class I involves anchor residues in certain positions and that antigenic peptides associated with MHC class I exhibit allele-specific structural motifs. We have previously reported an analysis of MHC class II-associated peptide sequences. Here we extend this analysis and show that certain amino-acid residues occur at particular positions in the sequence of peptides binding to a given MHC class II molecule. These sequence motifs require the amino terminus to be shifted one or two positions to obtain alignment; such shifts occur naturally for a single peptide sequence without qualitatively altering CD4 T-cell recognition.  相似文献   

6.
The CD4 and CD8 molecules are transmembrane glycoproteins expressed by functionally distinct subsets of mature T cells. CD4+ and CD8+ T cells recognize antigens on major histocompatibility complex (MHC) class II-bearing and class I-bearing target cells respectively. The ability of monoclonal antibodies against CD4 and CD8 to block antigen recognition by T cells, as well as cell-cell adhesion assays, indicate that CD4 and CD8 bind to nonpolymorphic determinants of class II or class I MHC. Here we demonstrate that soluble recombinant HLA-DR4 molecules from insect cells and HLA-DR-derived peptides bind to immobilized recombinant soluble CD4. CD4 binds recombinant soluble DR4 heterodimers, as well as the soluble DR4-beta chain alone. Furthermore, two out of twelve DR4-beta peptides could interact specifically with CD4. These findings show that CD4 interacts with a region of MHC class II molecules analogous to a previously identified loop in class I MHC proteins that binds CD8 (refs 8, 9).  相似文献   

7.
Cytotoxic T lymphocytes recognize fragments (peptides) of protein antigens presented by major histocompatibility complex (MHC) class I molecules. In general, the peptides are derived from cytosolic proteins and are then transported to the endoplasmic reticulum where they assemble with the MHC class I heavy chains and beta 2-microglobulin to form stable and functional class I molecules. The proteases involved in the generation of these peptides are unknown. One candidate is the proteasome, a nonlysosomal proteinase complex abundantly present in the cytosol. Proteasomes have several proteolytically active sites and are complexes of high relative molecular mass (Mr about 600K), consisting of about 20-30 subunits with Mrs between 15 and 30K. Here we show that at least one of these subunits is encoded by the mouse MHC in the region between the K locus and the MHC class II region, and inducible by interferon-gamma. This raises the intriguing possibility that the MHC encodes not only the MHC class I molecules themselves but also proteases involved in the formation of MHC-binding peptides.  相似文献   

8.
P A Reid  C Watts 《Nature》1990,346(6285):655-657
Class II major histocompatibility complex (MHC) glycoproteins associate with peptides derived from material endocytosed by antigen-presenting cells and processed along the endocytotic pathway. No consensus exists as to what extent class II molecules themselves are endocytosed and it is not known whether endocytosed MHC class II molecules can be recycled again to the cell surface--an itinerary which might allow a single cell-surface MHC molecule to associate with different peptides during its lifetime. We now show by using new cleavable labelling reagents that class II and class I MHC on B lymphoblastoid cells are continually endocytosed and recycled to the cell surface. The intracellular pool size is normally kept small by efficient recycling, but in the presence of primaquine the rate of recycling is slowed, thereby increasing the size of this pool substantially. On removal of the amine, the intracellular population recycles rapidly to restore the original distribution. These results reveal a cycle that might explain the rapid binding and turnover of some peptide/class II MHC complexes and the exchange of pre-existing for new peptides observed in living cells.  相似文献   

9.
Class II MHC molecules can use the endogenous pathway of antigen presentation   总被引:14,自引:0,他引:14  
Models for antigen presentation have divided the world of antigens into two categories, endogenous and exogenous, presented to T cells by class I and class II major histocompatibility complex (MHC) encoded molecules, respectively. Exogenous antigens are though to be taken up into peripheral endosomal compartments where they are processed for binding to class II MHC molecules. Endogenous antigens are either synthesized or efficiently delivered to the cytoplasm before being partially degraded in an as yet undefined way, and complexed with class I MHC molecules. A useful phenotypic distinction between the two pathways has been the sensitivity to weak bases, such as chloroquine, which is a property only of the exogenous pathway. The fungal antibiotic brefeldin A (BFA), which blocks protein transport from the endoplasmic reticulum to the Golgi network, also blocks class I-restricted antigen-presentation, providing us with the corresponding marker of the endogenous pathway. Experiments with influenza virus antigens have supported the view that class II MHC molecules can present exogenous but not endogenous antigen, whereas the observation that class II MHC molecules present measles virus non-membrane antigens by a chloroquine-insensitive pathway suggests that this is not always the case. We show here that influenza A matrix protein can be effectively presented to class II-restricted T cells by two pathways: one of which is chloroquine-sensitive, BFA-insensitive, the other being chloroquine-insensitive and BFA-sensitive. Our results indicate that both class I and class II molecules can complex with antigenic peptides in a pre-Golgi compartment and favour a unified mechanism for MHC-restricted endogenous antigen presentation.  相似文献   

10.
Traffic of MHC molecules dictates the source of peptides that are presented to T cells. The intracellular distribution of MHC class I and class II molecules reflects the dichotomy in presentation of antigen from endogenous and exogenous origin, respectively. In human B lymphoblastoid cells, class I molecules are present in compartments constituting the biosynthetic pathway, whereas class II molecules enter structures related to lysosomes during their biosynthesis.  相似文献   

11.
Cell-cell adhesion mediated by CD8 and MHC class I molecules   总被引:30,自引:0,他引:30  
CD4 and CD8 are cell-surface glycoproteins expressed on mutually exclusive subsets of peripheral T cells. T cells that express CD4 have T-cell antigen receptors that are specific for antigens presented by major histocompatibility complex class II molecules, whereas T cells that express CD8 have receptors specific for antigens presented by MHC class I molecules (reviewed in ref. 1). Based on this correlation and on the observation that anti-CD4 and anti-CD8 antibodies inhibit T-cell function, it has been suggested that CD4 and CD8 increase the avidity of T cells for their targets by binding to MHC class II or MHC class I molecules respectively. Also, CD4 and CD8 may become physically associated with the T-cell antigen receptor, forming a higher-affinity complex for antigen and MHC molecules, and could be involved in signal transduction. Cell-cell adhesion dependent CD4 and MHC II molecules has recently been demonstrated. To determine whether CD8 can interact with MHC class I molecules in the absence of the T-cell antigen receptor, we have developed a cell-cell binding assay that measures adhesion of human B-cell lines expressing MHC class I molecules to transfected cells expressing high levels of human CD8. In this system, CD8 and class I molecules mediate cell-cell adhesion, showing that CD8 directly binds to MHC class I molecules.  相似文献   

12.
Class I MHC molecules acquire peptides from endogenously synthesized proteins, whereas class II antigens present peptides derived from extracellular compartment molecules. This dichotomy is due to the fact that the invariant chain associates with class II molecules in the endoplasmic reticulum, preventing binding of endogenous peptides. The mutually exclusive binding of peptide and invariant chain to class II molecules suggests that the invariant chain might play a part in autoimmune disease.  相似文献   

13.
K Falk  O R?tzschke  H G Rammensee 《Nature》1990,348(6298):248-251
Major histocompatibility complex (MHC) class I molecules present peptides derived from cellular proteins to cytotoxic T lymphocytes (CTLs), which check these peptides for abnormal features. How such peptides arise in the cell is not known. Here we show that the MHC molecules themselves are substantially involved in determining which peptides occur intracellularly: normal mouse spleen cells identical at all genes but MHC class I express different patterns of peptides derived from cellular non-MHC proteins. We suggest several models to explain this influence of MHC class I molecules on cellular peptide composition.  相似文献   

14.
J Trowsdale  I Hanson  I Mockridge  S Beck  A Townsend  A Kelly 《Nature》1990,348(6303):741-744
Class I molecules of the major histocompatibility complex (MHC) bind and present peptides derived from the degradation of intracellular, often cytoplasmic, proteins, whereas class II molecules usually present proteins from the extracellular environment. It is not known how peptides derived from cytoplasmic proteins cross a membrane before presentation at the cell surface. But certain mutations in the MHC can prevent presentation of antigens with class I molecules. In addition, mutations possibly in the MHC can affect presentation by class II molecules. Here we report the finding of a new gene in the MHC that might have a role in antigen presentation and which is related to the ABC (ATP-binding cassette) superfamily of transporters. This superfamily includes the human multidrug-resistance protein, and a series of transporters from bacteria and eukaryotic cells capable of transporting a range of substrates, including peptides.  相似文献   

15.
Direct binding of influenza peptides to class I HLA molecules   总被引:15,自引:0,他引:15  
B P Chen  P Parham 《Nature》1989,337(6209):743-745
Activation of T lymphocytes requires the intracellular fragmentation of foreign antigens and their presentation by class I or class II major histocompatibility complex (MHC) glycoproteins. The direct binding of peptides to class II molecules has been demonstrated using equilibrium dialysis, gel filtration and fluorescence energy transfer at planar membranes, and its specificity compared to that of T-cell activation. In contrast, direct binding of peptides to class I molecules has been difficult to detect; although peptide sensitization experiments and the crystallographic structure of HLA-A2 (ref. 9) persuasively argue for its occurrence and importance. Here we describe a gel filtration assay from which we derive direct evidence for selective binding of an influenza matrix peptide to HLA-A2 and for binding of an influenza nucleoprotein peptide to HLA-B37. These two peptides have previously been shown to act respectively as targets for certain HLA-A2 or HLA-B37 restricted influenza-specific cytotoxic T lymphocytes (CTL). In addition we demonstrate binding to some, but not all, HLA allospecificities that cannot present these peptides to CTL. We estimate that less than 0.3% of the HLA molecules present in any given purified preparation were able to bind the added peptides.  相似文献   

16.
T Spies  M Bresnahan  S Bahram  D Arnold  G Blanck  E Mellins  D Pious  R DeMars 《Nature》1990,348(6303):744-747
Major histocompatibility complex (MHC) class I molecules export peptides to the cell surface for surveillance by cytotoxic T lymphocytes. Intracellular peptide binding is critical for the proper assembly and transport of class I molecules. This mechanism is impaired as a result of a non-functional peptide supply factor gene (PSF) in several human mutant cell lines with genomic lesions in the MHC. We have now identified PSF in the MHC class II region by deletion mapping in mutants and chromosome-walking. PSF is homologous to mammalian and bacterial ATP-dependent transport proteins, suggesting that it operates in the intracellular transport of peptides.  相似文献   

17.
The T-cell immune response is directed against antigenic peptide fragments generated in intracellular compartments, the cytosol or the endocytic system. Peptides derived from cytosolic proteins, usually of biosynthetic origin, are presented efficiently to T-cell receptors by major histocompatibility complex (MHC) class I molecules, with which they assemble, probably in the endoplasmic reticulum (ER). In the absence of recognizable N-terminal signal sequences, such cytosolic peptides must be translocated across the ER membrane by a novel mechanism. Genes apparently involved in the normal assembly and transport of class I molecules may themselves be encoded in the MHC. Here we show that one of these, the rat cim gene, maps to a highly polymorphic part of the MHC class II region encoding two novel members of the family of transmembrane transporters related to multidrug resistance. Other members of this family of transporter proteins are known to be capable of transporting proteins and peptides across membranes independently of the classical secretory pathway. Such molecules are credible candidates for peptide pumps that move fragments of antigenic proteins from the cytosol into the ER.  相似文献   

18.
Empty MHC class I molecules come out in the cold   总被引:43,自引:0,他引:43  
Major histocompatibility complex (MHC) class I molecules present antigen by transporting peptides from intracellularly degraded proteins to the cell surface for scrutiny by cytotoxic T cells. Recent work suggests that peptide binding may be required for efficient assembly and intracellular transport of MHC class I molecules, but it is not clear whether class I molecules can ever assemble in the absence of peptide. We report here that culture of the murine lymphoma mutant cell line RMA-S at reduced temperature (19-33 degrees C) promotes assembly, and results in a high level of cell surface expression of H-2/beta 2-microglobulin complexes that do not present endogenous antigens, and are labile at 37 degrees C. They can be stabilized at 37 degrees C by exposure to specific peptides known to interact with H-2Kb or Db. Our findings suggest that, in the absence of peptides, class I molecules can assemble but are unstable at body temperature. The induction of such molecules at reduced temperature opens new ways to analyse the nature of MHC class I peptide interactions at the cell surface.  相似文献   

19.
Induction of cytotoxic T-cell immunity requires the phagocytosis of pathogens, virus-infected or dead tumour cells by dendritic cells. Peptides derived from phagocytosed antigens are then presented to CD8+ T lymphocytes on major histocompatibility complex (MHC) class I molecules, a process called "cross-presentation". After phagocytosis, antigens are exported into the cytosol and degraded by the proteasome. The resulting peptides are thought to be translocated into the lumen of the endoplasmic reticulum (ER) by specific transporters associated with antigen presentation (TAP), and loaded onto MHC class I molecules by a complex "loading machinery" (which includes tapasin, calreticulin and Erp57). Here we show that soon after or during formation, phagosomes fuse with the ER. After antigen export to the cytosol and degradation by the proteasome, peptides are translocated by TAP into the lumen of the same phagosomes, before loading on phagosomal MHC class I molecules. Therefore, cross-presentation in dendritic cells occurs in a specialized, self-sufficient, ER-phagosome mix compartment.  相似文献   

20.
Antigens presented to CD4+ T cells derive primarily from exogenous proteins that are processed into peptides capable of binding to class II major histocompatibility complex (MHC) molecules in an endocytic compartment. In contrast, antigens presented to CD8+ T cells derive mostly from proteins processed in the cytosol, and peptide loading onto class I MHC molecules in an early exocytic compartment is dependent on a transporter for antigen presentation encoded in the class II MHC region. Endogenous cytosolic antigen can also be presented by class II molecules. Here we show that, unlike class I-restricted recognition of antigen, HLA-DR1-restricted recognition of cytosolic antigen occurs in mutant cells without a transporter for antigen presentation. In contrast, DR1-restricted recognition of a short cytosolic peptide is dependent on such a transporter. Thus helper T-cell epitopes can be generated from cytosolic antigens by several mechanisms, one of which is distinct from the classical class I pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号