首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
引入了一个定义在单位圆$\mathcal{U}=\{z\in\mathbb{C}:|z|1 \}$内规范化的解析函数类$\mathscr{A}$上的积分算子$J_{\gamma_1,\cdots,\gamma_n,\beta}(z)$, 利用著名的Becker单叶性判别法, Schwarz引理和Caratheodory不等式, 得到了这个积分算子在单位圆内单叶的3个充分条件. 即当$f_{j}(z)(j=1,2,\cdots,n)$及参数$\gamma_{1},\cdots,\gamma_{n},\beta$满足一定条件时, 积分算子$J_{\gamma_1,\cdots,\gamma_n,\beta}(z)$ 在单位圆内是单叶的.  相似文献   

2.
设~$\lambda_1, \lambda_2, \lambda_3, \lambda_4$是正实数, $\frac{\lambda_1}{\lambda_2}$是无理数和代数数, $\mathcal {V}$是具有良好间隔的序列, $\delta>0$. 证明了: 对于任意的$\varepsilon>0$及$v\in \mathcal {V},\ v\leq X$, 使得$|\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^3+\lambda_4p_4^3-v|相似文献   

3.
设$G$是无限循环群被有限生成Abel群的中心扩张, $T$是$G$的中心$\zeta G$的挠子群. 如果$T$的阶与$\zeta G/(G''\oplus T)$的挠子群的阶互素, 那么 群$G$可分解为$G=S\times F\times T$, 其中 $$ S=\left\{\left( \begin{array}{cccccc} 1&d_1\alpha_{1}&d_2\alpha_{2}&\cdots&d_r\alpha_{r}&\alpha_{r+1}\0&1&0&\cdots&0&\alpha_{r+2}\\vdots&\vdots&\vdots& &\vdots&\vdots\0&0&0&\cdots&0&\alpha_{2r}\0&0&0&\cdots&1&\alpha_{2r+1}\0&0&0&\cdots&0&1 \end{array} \right)\left| \begin{aligned} \\\alpha_{j}\in \mathbb{Z} \\~\ \end{aligned} \right. \right\}, $$ 这里$d_i$都是正整数, 满足$d_1\mid d_2\mid \cdots \mid d_r$, $F$是秩为$s$的自由Abel群, $T$是有限Abel群, $T=\mathbb{Z}_{e_1}\oplus \mathbb{Z}_{e_2}\oplus\cdots\oplus\mathbb{Z}_{e_t}$, $e_1>1$, 满足$e_1\mid e_2\mid \cdots \mid e_t$, 并且$(d_1, e_t)=1$. 进一步, $(d_1, d_2,\cdots , d_r; s;e_1,e_2,\cdots , e_t)$ 是群$G$的同构不变量, 即若群$H$也是无限循环群被有限生成Abel群的中心扩张, $T_{H}$是$\zeta H$的挠子群. 如果$T_{H}$的阶与$\zeta H/(H''\oplus T_{H})$的挠子群的阶互素, 那么$G$同构于$H$的充要条件是它们有相同的不变量. 显然, 这个结果涵盖了有限生成Abel群的结构定理.  相似文献   

4.
构造了~Cartan~型李代数$W(n;\mathbf{m})$的 一类~Borel~子代数$\Phi(n;\mathbf{m}),$其中$n$是一个正整数, 且$\mathbf{m}=(m_{1},\cdots,m_{n})$是一个$n$-\!元正整数数组. 确定了$\Phi(n;\mathbf{m})$的导子代数. 特别地, $\Phi(n;\mathbf{1})$是一个~Cartan~型完备阶化李代数, 它不同于任何典型完备李代数.  相似文献   

5.
仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)
在某个群同构~$\alpha$~(其中~$\alpha(\widetilde{S}) =
\widetilde{S}$)~下的固定点集合
能被看作是仿射~Weyl~群~($\widetilde{C}_n,S$). 那么加权的~Coxeter~群\
($\widetilde{C}_n,\widetilde{\ell}$)的左和双边胞腔($\widetilde{\ell}$
是仿射~Weyl~群~$\widetilde{A}_{2n}$~的长度函数),
就能通过研究仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)
在群同构~$\alpha$~下的固定点集合而给出一个清晰的划分.
因此给出了加权的~Coxeter~群~($\widetilde{C}_n,\widetilde{\ell}$)
对应于划分\ $\textbf{k}\textbf{1}^{\textbf{2n+1-k}}$~和~$(2n-1,2)$
的所有左胞腔的清晰刻画, 这里对所有的~$1\leqslant k \leqslant 2n+1$.  相似文献   

6.
主要讨论了加权Hardy-Littlewood 平均算子$U_{\psi}$与BMO函数$b$生成的交换子在Herz型空间和Morrey型 Herz空间上的有界性,并给出了其在Morrey型 Herz空间上有界的充分条件是 $\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt\infty.$ 若$\alpha=0$,$\lambda=0$,$q_1=q_2=p1$,则$\int_0^1t^{-(\alpha+n/q_2-\lambda)}\psi(t)\log{\frac{2}{t}}dt=\int_0^1t^{-n/p}\psi(t)\log{\frac{2}{t}}dt\infty$, 此时交换子$U_{\psi}^b$是$L^p(R^n)$空间上的有界算子.  相似文献   

7.
证明了如下的结论: 设\,$k\geqslant 2$\,是一个正整数, $\mathcal{F}$\,是区域\,$D$\,上的一族全纯函数, 其中每个函数的零点重级至少是\,$k$, $h(z),\,a_1(z),\,a_2(z)\,\cdots,\,a_k(z)$\,是\,$D$\,上的不恒为零的全纯函数. 假设下面的两个条件也成立:\,$\forall f\in\mathcal{F},$ (a) 在\,$f(z)$\,的零点处, $f(z)$\,的微分多项式的模小于\,$h(z)$\,的模; (b) $f(z)$\,的微分多项式不取\,$h(z)$, 则\,$\mathcal{F}$\,在\,$D$\,上正规.  相似文献   

8.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

9.
设$d,\ m$ 与 $n$ 均为正整数. 在1915年, Theisinger证明当$n\ge 2$时,$n$次调和和 $\sum_{k=1}^n\frac{1}{k}$不是一个整数. 在1946年,Erd\H{o}s和Niven 证明仅有有限多个$n$, 使得关于$1/m, 1/(m+d),..., 1/(m+nd)$ 的一个或多个初等对称函数是整数.在2015年, Wang 和 Hong 证明当 $n\ge 2$ 时,$1,1/3,...,1/(2n-1)$ 的所有初等对称函数均非整数.在本文中, 我们证明如下结果成立: 如果$n\ge 2$为正整数, 那么对任意$n$个正整数 $s_0,..., s_{n-1}$, 关于$1,1/3^{s_{1}},...,1/(2n-1)^{s_{n-1}}$的第二类初等对称函数 $$\sum\limits_{0\le i相似文献   

10.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

11.
Bergman kernels on generalized Hua domains   总被引:9,自引:0,他引:9  
The Bergman kernel functions with explicit formulas of the generalized Hua domains are obtained. And the holomorphic automorphism group for each generalized Hua domain is also given.  相似文献   

12.
给出了4类广义华罗庚域的全纯自同构群及其当参数都是正整数的Bergman核函数的超几何函数表达式和当参数之一为正实数而其余参数的倒数为正整数的Bergman核函数的显表达式。  相似文献   

13.
《科学通报(英文版)》1999,44(21):1947-1947
The main point is the calculation of the Bergman kernel for the so-called Cartan-Har-togs domains. The Bergman kernels on four types of Cartan-Hartogs domains are given in explicit formulas. First by introducing the idea of semi-Reinhardt domain is given, of which the Cartan-Hartogs domains are a special case. Following the ideas developed in the classic monograph of Hua, the Bergman kernel for these domains is calculated. Along this way, the method of "inflation", is made use of due to Boas, Fu and Straube.  相似文献   

14.
The main point is the calculation of the Bergman kernel for the so-called Cartan-Hartogs domains. The Bergman kernels on four types of Cartan-Hartogs domains are given in explicit formulas. First by introducing the idea of semi-Reinhardt domain is given, of which the Cartan-Hartogs domains are a special case. Following the ideas developed in the classic monograph of Hua, the Bergman kernel for these domains is calculated. Along this way, the method of “inflation”, is made use of due to Boas, Fu and Straube.  相似文献   

15.
证明了如果$~f~$是非常数整函数满足超级$~\\sigma_{2}(f)<\\frac{1}{2}~$,~$~k~$是一正整数,~如果$~f~$和$~f^{(k)}~$分担多项式$~p(z)~$~CM,~其中$~p(z)=a_{m}z^{m}+a_{m-1}z^{m-1}+\\cdots+a_{0}~$~($~a_{m}\\neq 0,~a_{m-1},~\\ldots,~a_{0}~$均为常数)~,~那么$~f^{(k)}(z)-p(z)=c(f(z)-p(z))~$,~其中$~c~$是非零常数.  相似文献   

16.
给出了一类Hua constructin的Bergman核函数及其全纯自同构群.  相似文献   

17.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设\begin{document}$ \mathcal{F} $\end{document}是从\begin{document}$ D\subset \mathbb{C} $\end{document}到\begin{document}${\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}的一族全纯映射,\begin{document}$ {H}_{0}$\end{document}和\begin{document}${H}_{l}({H}_{l}\ne {H}_{0}) $\end{document}是\begin{document}$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $\end{document}上处于一般位置的超平面,\begin{document}$l=1,2,\cdots,8 $\end{document}。假定对于任意的\begin{document}$ f\in \mathcal{F} $\end{document}满足条件:\begin{document}$f(\textit{z})\in H_l$\end{document}当且仅当\begin{document}$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): $\end{document}\begin{document}$ \langle x, \alpha_l \rangle=0\}$\end{document};若\begin{document}$f(\textit{z})\in H_l $\end{document}的并集,有\begin{document}$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$\end{document}大于或等于\begin{document}$\delta $\end{document}。\begin{document}$0 < \delta < 1 $\end{document},\begin{document}$\delta $\end{document}是常数,则 \begin{document}$ \mathcal{F} $\end{document}在D上正规。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号