首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用溶剂热法合成了纯净的CuFeS2粉体,并将其作为锂电池正极材料进行测试.试验结果表明,CuFeS2具有很高的室温一次放电容量,在14mA/g电流密度下,Li/CuFeS2电池的首次放电容量为1 100mAh/g,在-20℃,其放电容量仍可达到400mAh/g以上.Li/CuFeS2电池具有2个放电平台,而每个放电平台对应不同的电极反应.  相似文献   

2.
采用回收的含有少量Co3O4的LiCoO2为原料, 加入Li2CO3调整Li与Co的物质的量比, 高温合成正极材料LiCoO2, 运用扫描电镜和X射线衍射仪对合成的LiCoO2进行微观形貌与晶相结构的研究. 研究结果表明 合成时间对晶体结构和电化学性能有较大的影响, 合成时间越长, LiCoO2的结构越完整;将LiCoO2样品组装成电池进行电化学检测, 烧结时间为12 h的样品首次充、放电比容量分别为161.16和150.67 mA·h/g, 经30次循环之后, 放电比容量仍有141.19 mA·h/g, 表现出良好的电化学性能.  相似文献   

3.
LiNi0.5Co0.5O2的制备及其电化学性能   总被引:2,自引:2,他引:2  
分别以碳酸盐和氢氧化物为原料,合成了LiNi0.5Co0.5O2.研究结果表明:用氢氧化物为原料,在氧气气氛中,适当提高合成温度和延长反应时间均有利于LiNi0.5Co0.5O2晶格结构的完整;在740 ℃和氧气气氛下,以氢氧化物为原料反应15 h可以合成结构理想的LiNi0.5Co0.5O2;LiNi0.5Co0.5O-2的初始放电容量与LiCoO2的初始放电容量相当,达到141.3 mA·h/g,以LiNi0.5Co0.5O2为正极的电极系统具有稳定的电压输出和良好的循环性能,经200次循环后放电容量保持率为82%,可作为LiCoO2的廉价替代物.  相似文献   

4.
Ni/Co比例对LiCoxNi1-xO2电化学性能的影响   总被引:2,自引:1,他引:2  
采用固相反应法合成了一系列LiCoxNi1-xO2(0≤x≤1)材料,用XRD和电化学实验方法研究了Co3+取代Ni3+对LiNiO2材料电化学性能的影响.结果表明,当Ni/Co比例为8:2时材料具有最好电化学性能,比容量可以达到170~180mAh/g,并且具有好的抗过充性能.  相似文献   

5.
LiCoO2的形貌与结构对其电化学性能的影响   总被引:4,自引:3,他引:4  
研究了对电极界面状态有重要影响的LiCoO2物理参数如粒径分布、比表面积及表面形貌等对LiCoO2电化学性能的影响.研究结果表明:粒径及比表面积对LiCoO2电极的容量循环稳定性及电压循环稳定性有较大的影响;适宜的粒径分布有助于提高LiCoO2电极的循环稳定性,过大的比表面积会使电极循环稳定性急剧下降;随着晶块尺寸的减小,LiCoO2材料在大电流下的放电性能得到改善;在优化条件下合成的LiCoO2样品具有最佳的高倍率性能、较高的容量及电压循环稳定性.  相似文献   

6.
以Mn2O3和LiOH·H2O为原料,采用固相法制备了正交LiMnO2(简写为o-LiMnO2),通过X射线衍射(XRD)、透射电镜(TEM)和电化学循环测试对o-LiMnO2进行了研究.结果表明,反应温度较高时,o-LiMnO2晶体生长较完整,(110)晶面的堆垛层错较少.随着温度升高,o-LiMnO2电极首次库仑效率减小,放电容量逐渐降低,但循环稳定性有所提高.o-LiMnO2的电化学性能对充放电电流密度非常敏感,当充放电电流密度增大时,o-LiMnO2的活化次数增多,放电容量减小.  相似文献   

7.
天然黄铁矿FeS_2的电化学性能研究   总被引:1,自引:0,他引:1  
  相似文献   

8.
研究了磷酸锰锂(LiMnPO4)微纳米材料的水热合成过程及其电化学特性。在水热合成过程中,改变各种参数,如反应温度、反应物LiOH浓度、铁元素掺杂等,制备一系列LiMn-PO4粉体。使用X射线衍射仪(XRD)、扫描电镜(SEM)等分析手段对其进行分析表征,获得了优化的水热合成LiMnPO4工艺,制备了性能稳定的LiMnPO4正极材料。研究发现,水热合成温度是形成LiMnPO4物相的主要因素,在140℃以上温度合成时,可以得到纯相LiMnPO4;LiOH浓度对合成物相的影响不大,但是它改变了晶体的生长习性,导致粉体显微形貌从针状向颗粒状、片状转化,材料的电化学性能随之增加;纯相LiMnPO4的电化学性能无法满足应用需求,可以通过Fe元素掺杂形成固溶体,使LiMnPO4的电化学性能得到一定的提升,有望在动力电池领域得到应用。  相似文献   

9.
以一级有机胺为模板,制了薄层状的纳米MoO3-Temp,该材料具有3.5 nm左右的层间距.对MoO3-Temp薄层状纳米材料、微米级棒状MoO2超细材料及多晶M00.的电化学嵌镁性能进行了比较,发现层状结构缩短了镁离子的迁移路径,并且在层间还可以储存电解液,从而有利于镁离子向其晶格内部迁移.  相似文献   

10.
采用溶胶-凝胶法制备了LiNi0.5Mn1.5-xTixO4,研究了材料结构和电化学性能. 电化学测试表明,当掺钛量为0.3时,材料具有较好的循环性能,在0.1 C,0.5 C和1 C充放电时,容量分别为134 mAh/g,127 mAh/g和76 mAh/g. 循环伏安测试显示,4.2 V和4.85 V出现2个氧化峰,在4.56 V和3.88 V出现2个还原峰,证实此材料中Mn存在+3和+4混合价态.  相似文献   

11.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

12.
采用碳酸盐共沉淀工艺,通过控制结晶合成了显微形貌呈现较大差异的Li[Li0.17Mn0.58Ni0.25]O2样品,并对样品进行了X射线衍射、高分辨透射电镜、场发射扫描电镜分析以及恒电流充放电和交流阻抗测试.合成的Li[Li0.17Mn0.58-Ni0.25]O2材料均具有良好的结晶度,可标定为α-NaFeO2结构(空间群R3m).其中,具有一次颗粒沿六方棱柱长轴方向形成“簇形”团聚的材料比其他样品具有优异的倍率性能,在电压范围为2.5~4.8 V,倍率分别为0.5C、1.0C和3.0C时,Li[Li0.17Mn0.58Ni0.25]O2材料首次放电比容量分别达到205.4、195.5和158.5 mA·h·g-1,100次循环后放电比容量保持在203.5、187.2和151.2 mA·h·g-1,容量保持率分别为99%、96%和95%.Li[Li0.17Mn0.58Ni0.25]O2材料特殊的颗粒团聚状态降低了界面的电荷转移阻抗,材料的倍率性能显著提高.同时,文中对Li[Li0.17Mn0.58Ni0.25]O2材料在不同截止电压下的电化学性能进行了对比分析.  相似文献   

13.
研究了动力电池用5V纳米正极材料磷酸钴锂(LiCoPO4)的喷雾裂解合成技术及其电化学性能.研究中使用喷雾干燥法获得前驱体,通过高温裂解等一系列手段获得LiCoPO4纳米正极材料,使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)等分析手段对LiCoPO4样品进行分析表征和性能测试.结果发现,裂解温度是影响LiCoPO4合成的主要因素,650℃以上温度煅烧获得纯相LiCoPO4.纯相LiCoPO4的电化学性能不甚理想,而掺杂Fe元素部分取代Co能够提高LiCoPO4的初始容量和循环性能,使得该材料具有很好的应用前景.  相似文献   

14.
4 V级锂离子电池用橄榄石型LiMnPO4的电化学性能   总被引:2,自引:0,他引:2  
对反应物与中间产物进行球磨, 采用固相反应法在600 ℃合成了掺碳的橄榄石型LiMnPO4. 通过XRD表征样品的晶体结构, 采用SEM观察样品的微观形貌, 利用电化学手段测试样品的充放电性能, 并对样品进行交流阻抗和扩散系数的测定. 研究结果表明, 得到的样品物相较纯, 粒径小(100~200 nm)且分布均匀, 首次放电容量接近100 mA·h·g-1, 但样品循环容量衰减快, 大电流放电性能较差. 通过对样品的交流阻抗测试发现, 电化学反应阻抗随放电的进行而不断增大, 说明材料的荷电量越高, 界面电化学反应速度越快. 扩散系数的测量结果表明, 充电态和放电态的扩散系数分别1.2×10-12和5×10-13 cm2·s-1, 表明晶格中锂离子的浓度越高, 越容易脱出.  相似文献   

15.
金属有机骨架化合物是一种由金属离子与有机配体通过配位键或共价键合成的新型的电极材料。然而,其低的电子导电率和严重的不可逆锂存储制约了该材料在锂电池领域的实际应用。石墨烯具有一系列独特属性,如高的导电率、高表面积、化学稳定性,机械强度和柔韧性,多孔结构。通常用来掺杂在电极材料中以提高循环性能和增加电池的容量。在本实验中,我们研究了Cu-MOF掺杂石墨烯(Cu-MOF/RGO)作为锂电负极材料的电化学性能。结果表明,在充放电电流密度为50 mA g-1时,充放电循环50次后,材料的放电比容量可达到520 mAh g-1。同时该材料也显示出较好的倍率性能和较高的库仑效率。由此可以看出Cu-MOF/RGO是一种具有前景的锂离子电池负极材料。  相似文献   

16.
研究了一种新型锂电池正极材料邻氨基二苄基二硫化物(OABD)及其聚合物(POABD)的电化学性能.该材料在低倍率(0.1C)下,单体OABD的首次放电比容量达到96 mAh·g-1;聚合物POABD的首次放电比容量达到290 mAh·g-1,在2.0 V处有明显的放电平台,循环6次后容量保持在100 mAh·g-1,材料聚合后电池性能改善明显.  相似文献   

17.
超声浸渍包覆天然石墨的电化学性能   总被引:1,自引:0,他引:1  
首次使用超声浸渍法在天然石墨表面包覆热解炭用作锂离子电池负极材料,使用恒电流充放电和粉末微电极的循环伏安方法研究了这种复合材料的电化学嵌脱锂性能.结果表明,超声浸渍有利于天然石墨的均层包覆和深度包覆,可以改善天然石墨的界面性质,防止溶剂化锂离子插入石墨层间造成的结构层离,提高了天然石墨用作锂离子电池负极的电化学性能.共溶剂的种类和性质影响包覆石墨电极的嵌脱锂性能,在不同共溶剂的EC基电解液中,DMC表现出与包覆石墨最佳的相容性.  相似文献   

18.
通过水热法合成了纯度较高、结晶良好且粒径均匀细小的LiFePO4粉体.采用XRD,SEM对材料的结构和形貌进行分析,并研究了水热合成温度和反应时间对材料电化学性能的影响.结果表明,提高反应温度和延长合成时间有利于提高材料的结晶度,但会增大材料粒径.200℃水热合成5 h样品电化学性能最佳,0.1C倍率首次放电比容量138.0 mAh.g-1,具备工业化实用性.在水热合成中加入抗坏血酸和葡萄糖可有效避免Fe2+的氧化并增强材料的导电性.  相似文献   

19.
锂离子电池正极材料Li1-xVxFePO4/C的制备及电化学性能   总被引:1,自引:0,他引:1  
采用高温固相法合成了Li1-xVxFePO4/C(x=0,0.01,0.02,0.03,0.04,0.05,0.10)锂离子电池正极材料,通过XRD,SEM,CV,EIS和恒流充放实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明,少量V的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98V0.02FePO4/C材料以0.1 C倍率放电时,首次放电容量达到160.9 mAh·g^-1,且循环性能良好。  相似文献   

20.
以Li_2CO_3和NH_4VO_3为原料,采用非熔融态的固相反应法合成了锂离子电池正极材料锂钒氧化物.通过TG-DTA,XRD分析确定了合成反应的主要历程.XRD测试表明,580℃焙烧10h获得的产物为单一相层状结构,晶型发育良好.循环伏安测试表明,Li~+在材料中嵌入脱出的机理不同,嵌入是分步进行的.恒电流充放电测试表明,锂钒氧化物的初始容量为252.9mAh.g-1,55次循环后容量保持率高达97.07%,循环性能优良.交流阻抗测试表明,材料具有较高的离子电导率,有利于提高其电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号