首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以SnCl4为锡源,Gd3+为掺杂离子,采用水热法制备出不同掺杂浓度的SnO2纳米晶.运用XRD、TEM、FT-IR以及充放电测试等手段对其结构、形貌、电化学性能进行了表征.结果表明所制备样品为四方晶系金红石型SnO2,Gd3+以替位方式掺入SnO2纳米晶中.当名义Gd3+掺杂浓度达到15%时,SnO2纳米颗粒转变为纳米棒.电化学性能表征发现SnO2纳米棒的首次充放电容量、循环稳定性以及库伦效率都要高于纳米颗粒,并且经过50次循环后SnO2纳米棒的比容量仍保持有370mAh/g.研究结果表明,由于掺杂的作用,调节了材料的形貌与尺寸,改善了SnO2纳米晶的电化学性能.  相似文献   

2.
将多孔TiO_2微纳米球与单质硫热处理得到含硫60%(质量分数)的TiO_2/S复合材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对复合材料进行结构、形貌和孔径分析,并通过电池充放电测试系统和阻抗分析仪测试样品的电化学性能.实验结果表明:在1.0~3.0V电压范围内,以0.2C、1.0C电流密度对电池进行充放电性能测试,首次放电比容量分别为718.6 mAh/g和577.7mAh/g,100次循环后对应的放电比容量分别为452.4mAh/g和426.7mAh/g,容量保持率分别为62.9%和73.8%.  相似文献   

3.
通过改进的共沉淀方法成功合成了层状LiNi0.5Mn0.5O2正极材料,并对其结构、形貌以及电化学性能进行了测试。粉末X射线衍射结果表明,合成的LiNi0.5Mn0.5O2材料为层状α-NaFeO2结构,Li+和Ni2+混排很少。扫描电子显微镜结果显示,LiNi0.5Mn0.5O2材料是由形貌规则、大小均匀的亚微米级粒子构筑,粒子粒径分布在200~400 nm。另外,材料表现出了优异的电化学性能:在0.1 C的倍率下,材料的首次放电比容量为206 mAh·g-1,循环60次后,放电比容量为198 mAh·g-1,容量保持率为94.7%。即使在5 C倍率下,材料仍有157 mAh·g-1的首次放电比容量和良好的循环性能。  相似文献   

4.
采用静电纺丝和热处理技术成功制备了新型锂离子电池负极材料钛酸铜锂(Li2CuTi3O8)纳米粒子.通过扫描电子显微镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热分析(TG-DTA)、循环伏安法(CV)、恒流充放电和电化学交流阻抗(EIS)等测试手段对材料的形貌、结构、物相及电化学性能进行了表征和研究.结果表明所制备的Li2CuTi3O8纳米粒子具有良好的立方尖晶石结构,粒度分布均匀,粒径约为100~200nm.充放电测试显示,当电流密度为25mA g-1时,Li2CuTi3O8纳米材料的首次可逆容量为245.3mAh g-1;且该电极在50,100,200,500,1 000mA g-1的电流密度下循环10次后,放电比容量分别为189.2,186.1,176.9,152.2,127.5mAh g-1当电流密度再回到25mA g-1时,比容量仍然可达到228.6mAh g-1,该材料显示出良好的循环稳定性和倍率性能,有望成为锂离子电池新型负极材料.  相似文献   

5.
以硝酸锂、醋酸锰及廉价的尿素为材料,用燃烧法合成尖晶石型LiMn2O4,XRD研究发现,利用燃烧法制备的前驱体已经具有一定的尖晶石结构,但存在一些杂质峰,煅烧后得到纯净的尖晶石LiAlxMn2-xO4材料,其粒径较小,约为0.5μm,且颗粒分布均匀。在圆柱形实体电池体系中研究了材料的电化学性能。材料的首次放电容量达到了102.42 mA.h.g-1,对材料进行微量Al3 掺杂后,材料的循环性能得到显著提高,经过40次循环后,材料的容量保持率为83.3%。  相似文献   

6.
金属骨架有机多孔碳的制备及其在锂空气电池中的应用   总被引:1,自引:1,他引:0  
以苯二甲酸-锌配位化合物(MOF-5)为原料合成金属骨架有机多孔碳MOF-PC,并首次应用于锂空气电池.采用XRD、SEM、TEM、氮气脱吸附和恒流充放电测试研究了MOF-PC的物理及电化学性能.结果表明,样品MOF-PC为无定型碳,比表面积为654m2·g-1.以MOF-PC为空气电极的锂空气电池在0.1mA·cm-2电流密度下放电比容量高达3 183mAh·g-1,比传统碳材料(Super P)在相同电流密度下的容量高90%.  相似文献   

7.
以苯二甲酸-锌配位化合物(MOF-5)为原料合成金属骨架有机多孔碳MOF-PC,并首次应用于锂空气电池.采用XRD、SEM、TEM、氮气脱吸附和恒流充放电测试研究了MOF-PC的物理及电化学性能.结果表明,样品MOF-PC为无定型碳,比表面积为654m2g-1.以MOF-PC为空气电极的锂空气电池在0.1mA cm-2电流密度下放电比容量高达3 183mA h g-1,比传统碳材料Super P在相同电流密度下的放电比容量高90%.  相似文献   

8.
碳包覆对Li/CuV2O6电池性能的影响   总被引:1,自引:1,他引:0  
用溶胶-凝胶法制备了锂离子电池正极材料CuV2O6,XRD衍射证明制备的材料无杂质且结晶度良好.通过球磨技术在制备的CuV2O6表面包覆乙炔黑,用XRD、SEM对包覆前后CuV2O6材料的结构和表面形貌进行对比,应用循环伏安、交流阻抗及恒电流充放电技术研究了包覆前后材料电化学性能.结果发现,包覆在CuV2O6表面的乙炔黑疏松多孔,具有较强的吸附电解液的能力,可以显著降低电极的表面阻抗和电化学阻抗,减少电极的极化并提高电池的放电电压和放电比容量,对于提高电池的循环稳定性也具有重要的作用.  相似文献   

9.
采用二次Hummers氧化法,以天然鳞片石墨为原料制备了氧化石墨烯,通过一步微波水热法将氧化石墨烯与SnCl_2原位复合制备石墨烯/SnO_2复合物.以石墨烯/SnO_2复合物为锂离子电池负极材料,研究SnO_2对石墨烯锂离子电池负极材料的影响.结果表明,SnO_2与石墨烯复合可以制备一种高比容量的负极材料,首次放电比容量高达1 581 mAh/g.在1 000 mA/g电流密度下,比容量保持率超过50%;经过大电流充放电后,在100 mA/g电流密度下,比容量保持率仍然能够达到85%.电流密度100 mA/g,循环充放电100次时,可逆容量保持率超过90%.  相似文献   

10.
锡基硒化物具有理论比容量高、导电性优异、成本低等优点,在电化学储能领域具有较好的应用前景.但其循环稳定性低及倍率性能差仍限制其进一步商业化应用.针对这些问题,采用简单的水热-硒化法制备SnSe2/碳布柔性负极材料,并对其进行了钠离子电池性能的测试.结果表明,制备的电极材料在电流密度为0.1 A·g-1下,经过100圈充放电循环后,放电容量为541.0mAh·g-1,且在不同电流密度充放电循环之后可逆比容量仍可高达503.9 mAh·g-1.  相似文献   

11.
采用简单的水热-磷化热解法合成高性能的NiCoP/石墨烯(GS)复合电极材料.采用X射线衍射、拉曼光谱和透射电镜对材料的结构进行表征.利用循环伏安(CV)和恒流充放电(GCD)对材料的电容性能进行测试.结果表明,粒径为10~20 nm的NiCoP纳米粒子均匀地负载在石墨烯上.当其作为电极材料应用于超级电容器中时,展示出良好的电化学性能,在1 A/g时,其比电容为896 F/g.5 000次循环后,其比电容保持率为87.9%.  相似文献   

12.
高性能Li_4Ti_5O_(12)的合成及其电化学性能研究   总被引:1,自引:1,他引:0  
以无定型TiO2和氢氧化锂为原料,通过固相法合成了Li4Ti5O12.探讨了锂盐过量的质量分数和煅烧温度对Li4Ti5O12结构和电化学性能的影响,并通过XRD、SEM和恒电流充放电测试对其进行了表征.结果表明,当锂盐质量分数(ω)过量8%、煅烧温度为800℃时,得到了平均粒径为1.1μm的尖晶石型Li4Ti5O12,并具有最佳的电化学性能.0.1C倍率下首次放电比容量高达到170.18 mAhg-1,经过50次循环后放电比容量仍有139.81 mAhg-1,从第4次到第50次循环容量保持率为91.27%.当放电电流增大到1.0C时,首次放电比容量仍然保持在141 mAhg-1以上,经过50次循环后,比容量为107.33 mAhg-1,从第4次到第50次循环容量保持率仅为77.74%.  相似文献   

13.
采用改进的Hummers法合成了氧化石墨(GO),再通过水热法合成了还原氧化石墨(RGO)-InVO4纳米复合材料.采用X射线衍射(XRD)、透射电镜(TEM)和高分辨透射电镜(HRTEM)等手段对样品的组成和形貌进行了表征.分别考察了RGO-InVO4和InVO4作为锂离子电池负极材料在不同电流密度下的充放电和循环稳定性能.结果表明:RGO-InVO4电极的首次放电和充电比容量分别为1 047.5和599 mAh·g-1,而InVO4电极的首次放电和充电比容量分别为994.2和482 mAh·g-1;在不同电流密度下经过50次循环后,RGO-InVO4的放电和充电比容量分别为472.4和456.7 mAh·g-1,而InVO4的放电和充电比容量则分别为138.4和132.9 mAh·g-1.可见,RGO的引入能极大地改善InVO4的电化学性能,尤其是循环稳定性.  相似文献   

14.
利用静电吸附作用将带正电的Fe3O4颗粒与带负电的石墨烯(GN)相结合制备出稳定的Fe3O4-GN复合材料.XRD结果显示Fe3O4-GN复合材料是由立方晶型的Fe3O4和无序排列的GN组成,FT-IR结果表明氧化石墨烯被水合肼还原,SEM照片显示Fe3O4颗粒均匀地负载在GN片层表面,粒径约为160nm.当制备的Fe3O4-GN复合材料作为电极材料使用时,在5C倍率下放电、充电时,其电比容量能保持在700mAh·g-1左右;在1C倍率下循环50次后,其放电、充电比容量分别为749、741mAh·g-1,Fe3O4-GN电极显示出良好的倍率性能和循环性能.  相似文献   

15.
使用简单的化学沉积法制备出直接生长在泡沫镍上的前驱体Co(OH)2,之后经程序升温得到Co_3O_4超级电容器电极材料.通过X射线衍射、扫描电子显微镜、透射电子显微镜、傅里叶红外吸收光谱和拉曼光谱对制备的电极材料进行了表征,并进行了电化学性能测试.结果表明,生成了前驱体Co(OH)2和Co_3O_4超级电容器电极材料,形貌为由纳米片组成的网状结构.该形貌结构易于电解质渗透和电荷转移,减小了电荷转移电阻,与前驱体Co(OH)2相比,Co_3O_4的电化学性能得到显著提高.在三电极体系下,电流密度为0.75 A/g时,Co_3O_4的比电容达到820.62 F/g,且循环稳定性较好,经过1 000次充放电循环后,比电容仍为初始比电容的95.6%.  相似文献   

16.
利用水热法制备了铋-钴双金属氧化物(Bi_(3.43)Co_(0.57)O_(5.9))电极材料并用于超级电容器的构建,通过X-射线衍射、扫描电子显微镜(SEM)、循环伏安法(CV)、恒电流充放电法(GCD)以及交流阻抗法(EIS)等手段对材料进行物理及电化学性能测试。结果表明:合成的Bi_(3.43)Co_(0.57)O_(5.9)作为超级电容器的电极材料具有很好的电化学性能。当电流密度在1 A/g时,Bi_(3.43)Co_(0.57)O_(5.9)电极材料的比电容为890.6 F/g;当电流密度增加至5 A/g时,比电容仍保持在705.3 F/g。10 A/g电流密度下,2 000次恒电流充放电循环后,比电容保持率高达92.3%,表明该材料具有出色的循环稳定性。  相似文献   

17.
以聚乙烯吡咯烷酮(PVP)和聚甲基丙烯酸甲酯(PMMA)为原料,通过静电纺丝法结合三步热处理工艺成功制备出多孔碳纳米纤维.采用X射线衍射、扫描电镜、透射电镜和比表面分析仪等测试方法系统地分析了PVP/PMMA不同质量比对多孔碳纳米纤维的形貌和电化学性能的影响.实验测试结果表明当PVP与PMMA质量比为3∶2时,得到的多孔碳纳米纤维的比表面积最大,可达到545.4m2·g-1,并且具有最好的电化学性能;在0.1C充放电速率下50次循环之后样品的放电比容量约为220mAh·g-1.所有由PVP/PMMA混合原料制备的多孔碳纳米纤维的比容量均高于由PVP原料制备的碳纳米纤维,并具有较好的循环性能.  相似文献   

18.
通过液相共沉淀法及高温热解法制备了裂开球形氧化镍氧化铜复合物.采用了X射线衍射光谱(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征了该材料的结构.采用恒流充放电法研究了制备的NiO-CuO复合物在6 mol·L-1KOH溶液中的电化学行为.实验结果表明:这种裂开球形复合氧化物由氧化镍、氧化铜组成.该材料在1 A·g-1的电流密度下所得复合氧化物单电级比电容为735 F·g-1,并且在580次充放电循环后,容量保持率为98%,远远高于氧化镍(351 F·g-1)和氧化铜(262 F·g-1)的比容量.  相似文献   

19.
人们对锂离子电池的容量与寿命提出越来越高的要求.开发具有新型结构和优越性能的聚合物黏结剂,可有效提高电极在循环过程中的机械和电化学稳定性,最终助力实现高性能锂离子电池.本文通过阐述近年国内外围绕硅负极用黏结剂种类、特性及复合体系的研究成果,总结了黏结剂的组成及物化参数对电极电化学性能的影响规律,并展望硅负极黏结剂的发展...  相似文献   

20.
以AgNO_3为银源,通过热分解法在MnO_2表面包覆了一层Ag纳米颗粒,从而得到了具有核壳结构的Ag-MnO_2颗粒。利用XRD、EDS、SEM和TEM对所合成Ag-MnO_2的物质结构和微观形貌进行了表征,通过恒流放电和电化学阻抗测试表征了以Ag-MnO_2为正极的Li/MnO_2的电池性能。结果表明,在400℃下分解得到Ag包覆量为5%(质量百分比)的Ag-MnO_2性能最优,在0.5 C和1 C放电下,其放电比容量分别为172.0和110.6 m Ah·g-1,相比于未改性的MnO_2,其放电比容量分别提高了59.85%和50.68%,这是由于Ag颗粒均匀地包覆在MnO_2表面,提高了MnO_2的导电性,改善其电子传输速度,从而显著提高了电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号