首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Effects of extracellular magnesium ions ([Mg2+]o ) on intracellular free Mg2+ ([Mg2+]i ) and its subcellular distribution in single fission yeast cells, Schizosaccharomyces pombe, were studied with digital-imaging microscopy and an Mg2+ fluorescent probe (mag-fura-2). Using 0.44 mM [Mg2+]o , [Mg2+]i in yeast cells was 0.91±0.08 mM. Elevation of [Mg2+]o to 1.97 mM induced rapid (within 5 min) increments in [Mg2+]i (2.18±0.11 mM). Lowering [Mg2+]o to 0.06 mM, however, exerted no significant effects on [Mg2+]i (0.93±0.14 mM), at least for periods of up to 30 min. Irrespective of the [Mg2+]o used, the subcellular distribution of [Mg2+]i remained hetero geneous, i.e. where the sub-plasma membrane region >cytoplasm >nucleus. [Mg2+] in all three subcellular compartments increased significantly, two- to threefold, concomitant with [Mg2+]i when placed in 1.97 mM [Mg2+]o . We conclude that [Mg2+]i in fission yeast is maintained at a physiologic level when [Mg2+]o is low, but intracellular free Mg2+ rapidly rises when [Mg2+]o is elevated. Like most eukaryotic cells, yeast may have a Mg2+ transport system(s) which functions to maintain gradients of Mg2+ from the outside to inside the cell and among its subcellular compartments. Received 18 April 1996; received after revision 4 July 1996; accepted 26 July 1996  相似文献   

2.
Summary The catalytic mutation of the ions Al3+ and MoO 4 2– on the mixed carrier Cd(OH)2/Co(OH)2(Tr) is recognizable by the fact that the combination Tr+Al3++MoO 4 2– is more active in the decomposition of H2O2 than the combination Tr+MoO 4 2– +Al3+.  相似文献   

3.
The function and survival of pancreatic β cells critically rely on complex electrical signaling systems composed of a series of ionic events, namely fluxes of K+, Na+, Ca2+ and Cl? across the β cell membranes. These electrical signaling systems not only sense events occurring in the extracellular space and intracellular milieu of pancreatic islet cells, but also control different β cell activities, most notably glucose-stimulated insulin secretion. Three major ion fluxes including K+ efflux through ATP-sensitive K+ (KATP) channels, the voltage-gated Ca2+ (CaV) channel-mediated Ca2+ influx and K+ efflux through voltage-gated K+ (KV) channels operate in the β cell. These ion fluxes set the resting membrane potential and the shape, rate and pattern of firing of action potentials under different metabolic conditions. The KATP channel-mediated K+ efflux determines the resting membrane potential and keeps the excitability of the β cell at low levels. Ca2+ influx through CaV1 channels, a major type of β cell CaV channels, causes the upstroke or depolarization phase of the action potential and regulates a wide range of β cell functions including the most elementary β cell function, insulin secretion. K+ efflux mediated by KV2.1 delayed rectifier K+ channels, a predominant form of β cell KV channels, brings about the downstroke or repolarization phase of the action potential, which acts as a brake for insulin secretion owing to shutting down the CaV channel-mediated Ca2+ entry. These three ion channel-mediated ion fluxes are the most important ionic events in β cell signaling. This review concisely discusses various ionic mechanisms in β cell signaling and highlights KATP channel-, CaV1 channel- and KV2.1 channel-mediated ion fluxes.  相似文献   

4.
Summary The Noetherian surfaceF 4 (3) , which is represented on a plane by a linear 3 system ofC 9(A 1 3 A 2 3 A 3 3 A 4 3 A 5 3 A 6 3 A 7 3 A 8 3 A 9 2 A 10), possesses generally only one linear pencil of elliptic cubics. IfA i (i=1, 2, , 9) are the basis points of aHalphen pencil ofC 9,A 10 is infinitely near toA 9, and in this caseF 4 (3) is a not trivial example of such a surface with two pencils of elliptic cubics.  相似文献   

5.
The aberrations of cholinesterase (ChE) genes and the variation of ChE activity in cancerous tissues prompted us to investigate the expression of ChEs in colorectal carcinoma. The study of 55 paired specimens of healthy (HG) and cancerous gut (CG) showed that acetylcholinesterase (AChE) activity fell by 32% and butyrylcholinesterase (BuChE) activity by 58% in CG. Abundant AChE-H, fewer AChE-T, and even fewer AChE-R and BuChE mRNAs were observed in HG, and their content was greatly diminished in CG. The high level of the AChE-H mRNA explains the abundance of AChE-H subunits in HG, which as glycosylphosphatidylinositol (GPI)-anchored amphiphilic AChE dimers (G2A) and monomers (G1A) account for 69% of AChE activity. The identification of AChE-T and BuChE mRNAs justifies the occurrence in gut of A12, G4H and PRiMA-containing G4A AChE forms, besides G4H, G4A and G1H BuChE. The down-regulation of ChEs might contribute to gut carcinogenesis by increasing acetylcholine availability and overstimulating muscarinic receptors. Received 19 May 2006; received after revision 5 June 2006; accepted 5 July 2006  相似文献   

6.
The mechanisms of HCO 3 and Cl transport across basolateral membranes from rat ileum were investigated in isolated vesicles by means of uptake experiments. Neither Cl/HCO 3 exchanger nor Na+–(HCO 3 )n cotransport seem to be present in ileal basolateral membranes. Moreover Cl uptake is unaffected bycis Na+ and/or K+ gradients, indicating the absence of Na+–Cl, K+–Cl and Na+–K+–2Cl symport activity. An electrically conductive pathway seems to be responsible for both HCO 3 and Cl fluxes. Evidence is also given for the presence of a Na+/H+ exchanger at the basolateral pole of ileal enterocytes.  相似文献   

7.
A rapid, sensitive and simple spectrophotometric method for the detection of1O2 produced by photodynamic photosensitizers in slightly acid and air-saturated aqueous solutions has been developed. The method is based on the reaction of1O2 (produced by photodynamic processes) with I in the presence of ammonium molybdate as a catalyst. The reaction product I3 , proportional to1O2, is followed spectrophotometrically at 355 nm. Several ways of avoiding interference with other oxidizing compounds, either present before or produced during the irradiation, are described.The method could be used to measure the efficiency of water-soluble photodynamic photosensitizers.  相似文献   

8.
Flavocytochrome b 558 is the catalytic core of the respiratory-burst oxidase, an enzyme complex that catalyzes the NADPH-dependent reduction of O2 into the superoxide anion O2 - in phagocytic cells. Flavocytochrome b 558 is anchored in the plasma membrane. It is a heterodimer that consists of a large glycoprotein gp91phox (phox for phagocyte oxidase) (β subunit) and a small protein p22phox (α subunit). The other components of the respiratory-burst oxidase are water-soluble proteins of cytosolic origin, namely p67phox, p47phox, p40phox and Rac. Upon cell stimulation, they assemble with the membrane-bound flavocytochrome b 558 which becomes activated and generates O2 -. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections, illustrating the role of O2 - and the derived metabolites H2O2 and HOCl in host defense against invading microorganisms. The electron carriers, FAD and hemes b, and the binding site for NADPH are confined to the gp91phox subunit of flavocytochrome b 558 . The p22phox subunit serves as a docking site for the cytosolic phox proteins. This review provides an overview of current knowledge on the structural organization of the O2 --generating flavocytochrome b 558 , its kinetics, its mechanism of activation and the regulation of its biosynthesis. Homologues of gp91phox, called Nox and Duox, are present in a large variety of non-phagocytic cells. They exhibit modest O2 --generating oxidase activity, and some act as proton channels. Their role in various aspects of signal transduction is currently under investigation and is briefly discussed. Received 28 May 2002; received after revision 20 June 2002; accepted 24 June 2002  相似文献   

9.
Based on the findings that proinsulin C-peptide binds specifically to cell membranes, we investigated the effects of C-peptide and related molecules on the intracellular Ca2+ concentration ([Ca2+]i) in human renal tubular cells using the indicator fura-2/AM. The results show that human C-peptide and its C-terminal pentapeptide (positions 27–31, EGSLQ), but not the des (27–31) C-peptide or randomly scrambled C-peptide, elicit a transient increase in [Ca2+]i. Rat C-peptide and rat C-terminal pentapeptide also induce a [Ca2+]i response in human tubular cells, while a human pentapeptide analogue with Ala at position 1 gives no [Ca2+]i response, and those with Ala at positions 2–5 induce responses with different amplitudes. These results define a species cross-reactivity for C-peptide and demonstrate the importance of Glu at position 1 of the pentapeptide. Preincubation of cells with pertussis toxin abolishes the effect on [Ca2+]i by both C-peptide and the pentapeptide. These results are compatible with previous data on C-peptide binding to cells and activation of Na+,K+ATPase. Combined, all data show that C-peptide is a bioactive peptide and suggest that it elicits changes in [Ca2+]i via G-protein-coupled pathways, giving downstream enzyme effects. Received 13 May 2002; accepted 16 May 2002  相似文献   

10.
Summary The contraction induced by a Ca2+-independent myosin light chain kinase (MLCK-) was characterized in terms of isometric force (Fo), immediate elastic recoil (SE), unloaded shortening velocity (Vus), shortening under a constant load and ATPase activity of chemically skinned smooth muscle preparations. These parameters were compared to those measured in a Ca2+-induced contraction to assess the nature of cross bridge interaction in the MLCK-induced contraction. Fo developed in chicken gizzard fibers as well as SE were similar in contractions elicited by either agent. Vus in the contraction induced by MLCK-(0.36 mg/ml) was similar though averaged 39.3±8.9% less than Vus induced by Ca2+ (1.6x10–6M) in the control fibers. Addition of Ca2+ (1.6x10–6M) to a contraction induced by MLCK-resulted in small increases in both Fo and Vus. Shortening under a constant load was similar for both types of contractions. The contraction induced by MLCK-was accompanied by an increased rate of ATP hydrolysis. The MLCK-induced contraction is thus kinetically similar though not identical to a contraction induced by Ca2+. We conclude that with respect to actin-myosin interaction, MLCK- and Ca2+-induced contractions are similar.  相似文献   

11.
Summary Continuous administration of leukotriene C4 (LTC4, 10–10 M) to superfused rat anterior pituitary cells increased LH release for 40 min only, whereas in a parallel experiment gonadotropin-releasing hormone (GnRH, 10–9 M) evoked a continuous increase in hormone secretion. In contrast to GnRH, LTC4 did not desensitize rat anterior pituitary cells. The secretory action resulting from the administration of LTC4 (10–10 M) was abolished for 40 min after previous stimulation. The results documented the dual action of LTC4 on LH exocytosis.  相似文献   

12.
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.  相似文献   

13.
Summary The space-group of Cu(NH3)4SO4·H2O isD 2h 16 orD 2h 13 (D 2h 5 , D 2h 1 ) with a=7,07, b=12,12, c=10,66 Å ± 1%.  相似文献   

14.
Summary Previous reports suggested that the major cytosolic aldehyde dehydrogenase (ALDH1) was present in fetal and infant livers, but the major mitochondrial isozyme (ALDH2) was absent or severely diminished. Re-examination by means of starch gel electrophoresis followed by enzyme activity staining, and by means of dot blot immuno-hybridization of liver samples with known genotypes of theALDH 2 locus, indicated that bothALDH 1 andALDH 2 genes are expressed in fetal and infant livers. In addition, ALDH4 isozyme was also observed. The results imply that a fetus with the usual homozygousALDH 2 1 /ALDH 2 1 genotype, but not one with the atypicalALDH 2 1 /ALDH 2 2 orALDH 2 2 /ALDH 2 2 , is capable of detoxifying acetaldehyde transferred from the mother.  相似文献   

15.
We studied the Na+/K+ pump, Na+/K+ ATPase activity, and oxygen consumption (QO2) in hepatocytes isolated from the periportal (PH) and pericentral (CH) regions of the liver lobule, to provide an insight into the functional properties of these cells. Na+/K+ pump activity was determined using86Rb+ (a functional analog of K+) and ouabain, a specific inhibitor of this transport system. Our results indicate the the Na+/K+, pump and Na+/K+ ATPase activity are significantly lower in CH than in PH, although basal ouabain-sensitive (OS) QO2 was negligible in both of these cell preparations. However, OSQO2 was significantly lower in CH than in PH when the Na+/K+ pump was activated using the ionophore nystatin in a Na+-containing medium. These results indicate that the differences in membrane ion transport exist between hepatocytes from different locations of the liver lobule.  相似文献   

16.
Summary (1 R) [1-3H,2H1] 3-Phenylpropanol, the key intermediate in the synthesis of (4 R) [4-3H,2H1] D, L-homoserine and of the (4 S)-isomer, is obtained from (1 S) [1-2H1] 3-phenylpropanol and (1 RS) [1-3H] ethanol upon incubation with yeast alcohol dehydrogenase and NAD+; under similar conditions 2-phenylethanol undergoes very small exchange with [1-2H2] ethanol.  相似文献   

17.
Summary The K+ conductance inMyxicola giant axons activates in two phases which are pharmacologically separable. The fast phase of K+ activation is specifically inhibited by 4-aminopyridine and by the substitution of D2O for H2O. We suggestMyxicola giant axons, like the amphibian node of Ranvier, may possess more than one variety of K+ channel.  相似文献   

18.
Summary Internal longitudinal resistance (ri), a determinant of cardiac conduction, is affected by changes in intracellular calcium and protons. However, the role and mechanism by which H+ and Ca2+ may modulate ri is uncertain. Cable analysis was performed in cardiac Purkinje fibers to measure ri during various interventions. In some experiments, intracellular pH (pHi) was recorded simultaneously to study the pHi-ri relation. Both intracellular Ca2+ and H+ independently modified ri. However, internal resistance of cardiac fibers was insensitive to pHi changes compared to other tissues. A latent period preceded the pHi-related changes in ri and the amount of change depended upon methodology. The results suggest that direct action of protons on ri may be subordinate to other regulatory processes. Ionic regulation of internal longitudinal resistance may occur by more than one mechanism: i) direct cationic binding to sites on junctional membrane proteins; and ii) H+- or Ca2+-dependent phosphorylation of junctional proteins.  相似文献   

19.
Summary Cell survival and photoreactivation of 254 nm ultraviolet (UV) light damage in a wild typeDrosophila cell line was assayed by colony formation in liquid medium. Fo, Fq, and extrapolation number for the exponential portion of survival curves are 21 J/m2, 3.6 J/m2, and 1.5 for non-photoreactivated cells and 110 J/m2, 11.2 J/m2, and 1.3 for those exposed to photoreactivating light. Maximal photoreactivation occurs at the 100 J/m2 region of the curve. At 10 and 50% survival, 75–80% of the UV damage was photoreactivable.  相似文献   

20.
Nickel is considered to be a selective blocker of low-voltage-activated T-type calcium channel. Recently, the Ni2+-binding site with critical histidine-191 (H191) within the extracellular IS3–IS4 domain of the most Ni2+-sensitive Cav3.2 T-channel isoform has been identified. All calcium channels are postulated to also have intrapore-binding site limiting maximal current carried by permeating divalent cations (PDC) and determining the blockade by non-permeating ones. However, the contribution of the two sites to the overall Ni2+ effect and its dependence on PDC remain uncertain. Here we compared Ni2+ action on the wild-type “Ni2+-insensitive” Cav3.1w/t channel and Cav3.1Q172H mutant having glutamine (Q) equivalent to H191 of Cav3.2 replaced by histidine. Each channel was expressed in Xenopus oocytes, and Ni2+ blockade of Ca2+, Sr2+, or Ba2+ currents was assessed by electrophysiology. Inhibition of Cav3.1w/t by Ni2+ conformed to two sites binding. Ni2+ binding with high-affinity site (IC50 = 0.03–3 μM depending on PDC) produced maximal inhibition of 20–30 % and was voltage-dependent, consistent with its location within the channel’s pore. Most of the inhibition (70–80 %) was produced by Ni2+ binding with low-affinity site (IC50 = 240–700 μM). Q172H-mutation mainly affected low-affinity binding (IC50 = 120–160 μM). The IC50 of Ni2+ binding with both sites in the Cav3.1w/t and Cav3.1Q172H was differentially modulated by PDC, suggesting a varying degree of competition of Ca2+, Sr2+, or Ba2+ with Ni2+. We conclude that differential Ni2+-sensitivity of T-channel subtypes is determined only by H-containing external binding sites, which, in the absence of Ni2+, may be occupied by PDC, influencing in turn the channel’s permeation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号