首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 265 毫秒
1.
高效毛细管电泳分离检测5种喹诺酮类抗生素   总被引:1,自引:0,他引:1  
采用高效毛细管电泳分离检测加替沙星、洛美沙星、依诺沙星、环丙沙星和氧氟沙星等5种喹诺酮类抗生素,探讨了电泳参数对分离结果的影响.在检测波长为268 nm时,确定最佳实验条件为:电泳缓冲液为pH值为8.8的15 mmol/L Na2B4O7-15 mmol/L KH2PO4溶液,分离电压为8 kV,高差为10 cm,进样时间为20 s.在最佳分离条件下,5种抗生素在9 min内实现基线分离,样品浓度在2×10-6~4×10-6 mmol/L之间.同时,在最佳分离条件下检测市售洛美沙星片中洛美沙星的质量分数为36%,回收率为109.4%.  相似文献   

2.
建立毛细管区带电泳同时测定人体血浆中盐酸伪麻黄碱和磷酸可待因含量的方法.在75μm I.D×60cm未涂层石英毛细管中,以30mmol/L Tris-HCl为电泳缓冲溶液,分离电压为22kV时,两种被测组分在5min内达到基线分离.盐酸伪麻黄碱和磷酸可待因的检出限分别为0.50、0.30μg/mL,样品加标回收率在88%~95%之间,相对标准偏差(RSD)均小于5%.该方法简便、快速、准确,并成功用于人体血浆样品的分析.  相似文献   

3.
槐米中芦丁和槲皮素的毛细管电泳-电化学检测   总被引:12,自引:0,他引:12  
用毛细管区带电泳 -电化学检测法测定了中药槐米中芦丁和槲皮素的含量。研究了电极电位、电解液酸度和浓度、电泳电压及进样时间等对电泳的影响 ,得到了较为优化的测定条件。以直径为 30 0 μm的碳圆盘电极为检测电极 ,电极电位为 0 .90V (vs .SCE) ,在 10 0mmol/L硼酸盐缓冲液 (pH 9.0 )中 ,上述两组分在 10min内完全分离。芦丁和槲皮素浓度与电泳峰电流分别在 7.5× 10 - 7~ 1.0× 10 - 3和 5 .0× 10 - 7~ 1.0× 10 - 3mol/L范围内呈良好线性 ,检测下限分别为 4 .34× 10 - 7和 2 .2 5× 10 - 6 mol/L。 7次测定含 5 .0× 10 - 4 mol/L芦丁和槲皮素的试样溶液 ,峰高的相对标准偏差分别为 2 .5 6 %和 4 .11% ,五次测得的平均回收率分别为 97.80 %和 96 .84 %  相似文献   

4.
毛细管电泳法测定复方乳酸环丙沙星注射液   总被引:2,自引:1,他引:1  
基于环丙沙星和利巴韦林药物的配伍使用,建立了一种快速分离并同时测定复方乳酸环丙沙星注射液中环丙沙星和利巴韦林配伍药的毛细管区带电泳新方法.选用6×10-2mol/L硼砂作缓冲液,在18 kV电压,20℃条件下5 kPa进样8 s,紫外检测器于275 nm波长下检测乳酸环丙沙星,207 nm波长下检测利巴韦林.结果环丙沙星和利巴韦林的校准曲线在5~100 mg/L内呈良好的线性关系(r0.999 9),复方乳酸环丙沙星注射液回收率为97.2%~110%,相对标准偏差小于2%,日内精密度小于3%,日间精密度小于4%.  相似文献   

5.
应用自组装毛细管电泳—安培检测装置,以微石墨圆盘电极(vs.Ag AgCl)作为工作电极,在1000mV检测电位下,0.02mol L(pH6.0)H3PO4-NaAc缓冲介质中,采用24kV分离电压作用于体系,建立了毛细管电泳—安培检测法测定抗精神病药氟奋乃静的新方法.在最佳检测条件下,响应电流与浓度之间有着良好的线性关系,线性范围达2个数量级(0.1-10μg mL),检测限为0.04μg mL.5次平行测定的相对标准偏差RSD(n=5)为5.8%.将方法用于西药氟奋乃静片剂中的主要成分氟奋乃静测定,准确度达94.5%,回收率范围为95.5%-97.1%.方法同样适用于模拟尿样中氟奋乃静的测定.  相似文献   

6.
用毛细管电泳间接紫外法在4 min内快速测定了花粉中4种金属阳离子(K ,Na ,Ca2 ,Mg2 ).以4 mmol/L CuSO4为背景吸收物质,4 mmol/L HAc为络合剂,0.1 mol/L 硫酸调节pH=3.40,温度25 ℃,运行电压20 kV,紫外检测波长214 nm的优化条件下,4种金属阳离子均达到基线分离,检测限0.1~0.5 mg/L,迁移时间和峰面积的相对标准偏差(RSD)分别小于0.62%和6.3%(n=5).结果表明,该方法线性范围宽,选择性好,实际花粉样品测定结果与原子吸收法一致.  相似文献   

7.
毛细管电泳-联吡啶钌电化学发光测定利多卡因   总被引:1,自引:1,他引:0  
基于利多卡因对联吡啶钌在铂电极上的电致发光信号有增敏作用,建立了一种测定利多卡因的毛细管电泳-电化学发光分析方法.讨论了磷酸盐缓冲液pH值、浓度、分离电压、检测电位等实验参数对利多卡因分离检测的影响.在优化的实验条件下,利多卡因在1.5~740μmol/L内呈良好线性,检出限为0.1μmol/L.应用此法测定了尿液中利多卡因的含量,回收率为90%~93.5%.  相似文献   

8.
正常红细胞与异常红细胞的毛细管电泳分离   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对红细胞的毛细管电泳行为的研究,建立了利用毛细管电泳检测鉴定红细胞不同状态的方法,在含6%葡萄糖的磷酸盐缓冲液(0.1 mol/L pH 7.4),(50 cm/65 cm)×75μm毛细管,进样5 s,电压20 kV,温度25℃的电泳条件下可获得尖锐且对称的细胞峰;同时,成功分离了正常红细胞和被病毒感染的异常红细胞,分离度达1.04,并在此基础上考察不同损伤程度的红细胞的泳动行为.  相似文献   

9.
建立了一种高效毛细管电泳方法,用于缬沙坦和苯磺酸氨氯地平的同时分析:以30mmol/L磷酸钠缓冲液(pH=7.47)作为电解质溶液,检测波长237nm,分离电压15kV,高度差进样10s.同时进行了方法学验证:缬沙坦在0.050 4~0.504 0mg/mL内线性良好(r=0.999 8,n=6),迁移时间和峰面积的相对标准偏差(RSD)分别为0.3%和1.3%(n=6),回收率为98.98%~99.79%;苯磺酸氨氯地平在0.050 4~0.504 0mg/mL内线性良好(r=0.999 6,n=6),迁移时间和峰面积的RSD为0.6%和1.4%(n=6),回收率为98.22%~99.46%.通过上述高效毛细管电泳法,缬沙坦和苯磺酸氨氯地平在15.0min内分离良好,分离度(R=29.8).此方法快速,灵敏,实用.  相似文献   

10.
毛细管电泳电化学检测葛根和葛藤中几种黄酮类化合物   总被引:17,自引:0,他引:17  
用毛细管电泳电化学检测法测定了葛根和葛藤中葛根素、大豆甙元和芦丁含量.以碳圆盘电极为检测电极,电极电位为0.90V(vs.SCE),在50mmol/L硼酸盐缓冲液(pH9.0)中,使用长40cm熔融石英毛细管,当分离电压为9kV,上述三组分在12min内完全分离.葛根素、大豆甙元和芦丁浓度与电泳峰电流分别在2.5×10-6~1.0×10-3,1.0×10-6~1.0×10-3和5.0×10-6~1.0×10-3mol/L范围内呈良好线性,检出限(S/N=3)分别为3.4×10-7,2.4×10-7和5.1×10-7mol/L.7次测定葛根素、大豆甙元和芦丁的混合标准溶液,峰高的相对标准偏差分别为2.71%,2.47%和4.21%.  相似文献   

11.
利用毛细管电泳电化学发光(CE-ECL)法检测了尿样中的香草扁桃酸(VMA)和高香草酸(HVA),得到了最佳的分离检测条件:50 mmol/L磷酸盐缓冲溶液(pH 8.2);分离电压16 kV;检测电势1.2 V(相对于饱和甘汞电极).在最佳条件下,VMA和HVA的浓度检测限(S/N=3)分别为5.0×10-7 mol/L和6.1×10-7 mol/L,线性回归系数分别为0.999 3和0.997 9.并以此方法将尿液中的VMA和HVA在10 min内有效地分离检测,不受其他干扰,得到加标回收率分别为98%和99%,取得了满意的结果.  相似文献   

12.
建立了新的高效液相色谱-紫外检测方法对两种抗癫痫药物地西泮(DP)和卡马西平(CBZ)进行同时测定。以乙腈-0.01mol/LKH2PO4(40∶60,v/v)为流动相,流速为0.4mL/min,紫外检测波长216nm时,使用Diam-oncil C18柱对两种药物能够达到很好的基线分离。两种药物的回收率在95%~104%之间,DP和CBZ的检测限分别为6ng/mL和15ng/mL。分别对0.5μg/mL的DP和CBZ进行了11次平行测定,其日内RSD对应为2.2%和1.4%。本方法灵敏、准确,已用于对儿童尿液中的DP和CBZ进行的定性及定量分析,并获得满意结果。  相似文献   

13.
采用毛细管胶束电动色谱技术对阿莫西林、氯唑两林、头孢氨苄、头孢噻肟、头孢唑林5种抗生素进行分离.18kV电压下,在溶有100mmol/LSI)S的硼酸盐缓冲溶液(20mmol/L,pH-8.9)中,采用二极管阵列检测器.在9min内可以完成对此5种抗生素的分离检测.线性范围0.1~250μg/mL.相关系数为0.9976~0.9994,检测限为0.01~0.13μg/mL.运用此方法对3种药物形式的抗生素进行同时检测.日间和日内的RSDs分别为3.95%~8.12%和1.51%~2.86%。迁移时间的日间和日内的RSDs分别为0.47%~1.11%和0.032%~0.295%.在尿样的测定中,日问和日内的RSDs分别为1.31%~6.07%和0.66%~7.65%,回收率为90%~110%.此外.还对分离条件对抗生素的迁移行为的影响做了理论探讨.  相似文献   

14.
毛细管电泳-电化学发光联用测定琥乙红霉素   总被引:2,自引:0,他引:2  
 基于琥乙红霉素对联吡啶钌(Ru(bpy)32+)电化学发光的增强作用,结合高效毛细管电泳分离技术,建立了一种毛细管电泳-电化学发光联用检测琥乙红霉素的新方法。分别对分离和检测条件进行了优化。优化条件下,琥乙红霉素的线性范围为0.7~10.0 μmol/L,检测限为0.23 μmol/L,峰高相对标准偏差RSD为4.1%。采用堆积放大进样技术可进一步提高检测灵敏度。本方法用于生物体液中琥乙红霉素的测定,回收率为81.3%~93.0%。  相似文献   

15.
采用毛细管电泳法对去甲肾上腺素、去氧肾上腺素和异丙肾上腺素三种肾上腺素类化合物进行分离检测.在电泳运行缓冲液为100mmol/L NaH2PO4(pH=5.2)中,当分离电压为22kV时,三种肾上腺素类化合物在12min内达到基线分离.在最优的条件下,各组分的峰面积与待测物浓度在0.02-50μg/mL范围内呈良好的线性关系,检测限均为0.01μg/mL.将该方法用于加标尿样中上述三种分析物的测定,回收率为94.89%-105.9%.  相似文献   

16.
发展了毛细管电泳—安培检测方法,并将这一联用技术应用于苯酚、2,4-二氯苯酚、对硝基苯酚和邻、间、对甲酚的同时分离检测中.考察了氧化还原电位、缓冲溶液酸度、盐度、分离驱动电压及进样时间等因素对分析检测的影响.在优化实验条件下,以Na_2HPO_4-NaOH(pH11.38)为缓冲体系,6种酚类物质能够在25 min内实现基线分离,氧化还原电位0.78 V(versusSCE)下可以定量检测(三电极体系为:直径为300μm的碳圆盘电极、饱和甘汞电极及铂电极).实验结果表明,其线性达3个数量级(S/N=3),检测限达10(-7)mol/L.本文还尝试把该方法应用于两个实际工业污水的酚类污染物的检测,其回收率为94.0%~107.0%,结果令人满意.因此,该方法可为政府及企业环境检测部门提供一种快速、准确、低廉、无污染、重现性高的质量控制方法.  相似文献   

17.
采用外补充鞘流液的接口形式,实现毛细管电泳与质谱的联用,在石英毛细管(100μm i.d.)内原位合成3 mm长的聚甲基丙烯酸-乙二醇二甲基丙烯酸酯[poly( MAA-co-EDMA)]整体柱,进行样品的在线衍生化、在线预富集以及分离检测.建立了醛类物质的毛细管电泳-质谱联用分析方法,并应用于肺癌患者尿样中己醛和庚醛的检测.对缓冲液浓度,分离电压等条件进行了优化,方法的相对标准偏差为6.7%~13.9%,检测限在0.15~0.18 mol·L-1范围内.该方法分析速度快,灵敏度高,为CE/MS的联用提供了一种新的装置设计思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号