首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutamate, by activation of metabotropic receptors (mGluRs), can lead to a reduction of synaptic efficacy at many synapses. These forms of synaptic plasticity are referred to as long-term depression (mGluR-LTD). We will distinguish between mGluR-LTD induced by pre- or postsynaptic receptors and mGluR-LTD induced by the locus of the expression mechanism of the synaptic depression. We will also review recent evidence that mGluR-mediated responses themselves are subject to depression, which may constitute a form of metaplasticity. Received 13 May 2008; received after revision 07 July 2008; accepted 11 July 2008  相似文献   

2.
Appropriate targeting and clustering of ionotropic glutamate receptors (iGluRs) is critical for the formation and maintenance of excitatory synapses. Recent studies have demonstrated that the synaptic localization of iGluR subtypes is remarkably heterogeneous and subject to regulation over time scales ranging from minutes to months. These findings, together with the identification of key protein binding partners of iGluRs, have opened a window onto the complex cell biology of iGluR membrane trafficking. In this article, we review recent findings on the cellular and molecular mechanisms involved in localizing iGluRs at synapses and discuss their implications for synaptogenesis and synaptic plasticity.  相似文献   

3.
4.
Long-term potentiation (LTP) and long-term depression (LTD) are two electrophysiological models that have been studied extensively in recent years as they may represent basic mechanisms in many neuronal networks to store certain types of information. In several brain regions, it has been shown that these two forms of synaptic plasticity require sufficient dendritic depolarization, with the amplitude of the calcium signal being crucial for the generation of either LTP or LTD. The rise in calcium concentration mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors has been proposed to stimulate various calcium-dependent enzymatic processes that could convert the induction signal into long-lasting changes in synaptic structure; protein kinases and phosphatases have so far been considered predominantly with regard to LTP and LTD formation. According to several lines of experimental evidence, changes in synaptic function observed with LTP and LTD are thought to be the result of modifications of postsynaptic currents mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) subtype of glutamate receptors. Moreover, it has become apparent recently that activation of the calcium-dependent enzyme phospholipase A2 (PLA2) could be part of the molecular mechanisms involved in alterations of AMPA receptor properties during long-term changes in synaptic operation. In the present review, we will first describe the results that indicate a critical role of the phospholipases in regulating synaptic function. Next, sections will be devoted to the effects of PLA2 and phospholipids on the binding properties of glutamate receptors, and a revised biochemical model will be presented as an attempt to integrate the PLA2 enzyme into the mechanisms ( in particular kinases and phosphatases) that participate in adaptive neural plasticity. Finally, we will review data relevant to the issue of selective changes in AMPA binding after environmental enrichment and LTP.  相似文献   

5.
Recent years have seen rapid and significant advances in our understanding of the G-protein-coupled gamma-amino butyric acid, B-type (GABA(B)) receptor, which could be a therapeutic target in conditions as diverse as epilepsy and hypertension. This progress originated with the ground-breaking work of Bernhard Bettler's team at Novartis who cloned the DNA encoding a GABA(B) receptor in 1997. Currently, the receptor is thought to be an unusual, possibly unique, example of a heterodimer composed of homologous, seven-transmembrane-domain (7TMD) subunits (named GABA(B) R1 and GABA(B) R2), neither of which is fully functional when expressed alone. The large N-terminal domain of the GABA(B) R1 subunit projects extracellularly and contains a ligand binding site. The similarity of the amino acid sequence of this region to some bacterial periplasmic amino acid-binding proteins of known structure has enabled structural and functional modelling of the N-terminal domain, and the identification of residues whose substitution modulates agonist/antagonist binding affinities. The intracellular C-terminal domains of the R1 and R2 subunits appear to constitute an important means of contact between the two subunits. Alternative splice variants, a common and functionally important feature of 7TMD proteins, have been demonstrated for the R1 subunit. Notably GABA(B) R1a differs from GABA(B) R1b by the possession of an N-terminal extension containing two complement protein modules (also called SCRs, or sushi domains) of unknown function. The levels at which each of the respective variants is expressed are not equal to one another, with variations occurring over the course of development and throughout the central nervous system. It is not yet clear, however, whether one variant is predominantly presynaptically located and the other postsynaptically located. The existence of as yet unidentified splice variants, additional receptor subtypes and alternative quaternary composition has not been ruled out as a source of receptor heterogeneity.  相似文献   

6.
Glutamate (glu) an excitatory neurotransmitter amino acid, is present in high concentrations in the mammalian central nervous system and is the most abundant amino acid in our daily diet. In the present study the activities of lactate dehydrogenase (LDH) and glutamate dehydrogenase (GDH) were evaluated in the circumventricular organs (CVO) of the brain in 25-day-old rats following MSG administration at a dose of 4 mg/g b.wt during the first ten days of life. The results show the LDH activity increased to 265% of that in the control (p<0.001), whereas GDH activity was significantly decreased (p<0.05), The great elevation in LDH, a cytoplasmic marker enzyme, is apparently due to cytoskeletal changes brought about as a consequence of glu toxicity, whereas lowered GDH activity indicates altered glu homostasis in the blood-brain-barrier deficient areas following neonatal exposure to glu.  相似文献   

7.
Summary The lectin receptor sites on the proteogalactans from the albumin glands of West African land snails,Archachatina marginata andAchatina achatina have been studied by precipitin reactions using the agar-gel double diffusion technique with various lectins. The proteogalactans from both snails have predominantly terminal -D-galactose structures; but they show characteristic differences in the topographical features at the surfaces of the carbohydrate structures presumed to be compatible with the combining site for these lectins.  相似文献   

8.
Purine and pyrimidine receptors   总被引:17,自引:0,他引:17  
Adenosine 5′-triphosphate (ATP), in addition to its intracellular roles, acts as an extracellular signalling molecule via a rich array of receptors, which have been cloned and characterised. P1 receptors are selective for adenosine, a breakdown product of ATP, produced after degradation by ectonucleotidases. Four subtypes have been identified, A1, A2A, A2B and A3 receptors. P2 receptors are activated by purines and some subtypes also by pyrimidines. P2X receptors are ligand-gated ion channel receptors and seven subunits have been identified, which form both homomultimers and heteromultimers. P2Y receptors are G protein-coupled receptors, and eight subtypes have been cloned and characterised to date. Received 22 November 2006; received after revision 11 January 2007; accepted 27 February 2007  相似文献   

9.
Zusammenfassung Auf subtotale Hepatektomie (5. Tag) erfolgende Leberregeneration führt zu einer wesentlichen Erhöhung des SGOT-Wertes, mit Anstieg bis zum 10. Tag. Damit parallel verläuft auch die Transaminase-Aktivität der regenerierenden Leber.  相似文献   

10.
11.
Bitter peptides and bitter taste receptors   总被引:1,自引:0,他引:1  
Bitter peptides are a structurally diverse group of oligopeptides often generated in fermented, aged, and hydrolyzed food products that make them unfavorable for consumption. Humans perceive bitterness by a repertoire of 25 human bitter receptors, termed T2Rs. Knowledge of the structural features of bitter receptors and of the factors that stimulate bitter receptors will aid in understanding the mechanism responsible for bitter taste perception. This article reviews the current knowledge regarding structural features of bitter peptides and bitter taste receptors. Received 24 November 2008; received after revision 11 December 2008; accepted 16 December 2008  相似文献   

12.
Summary and conclusions The recent characterization of the human insulin receptor structure and its intrinsic tyrosine kinase activity represent major advances in our understanding of the mechanism of insulin action. It is reasonable to think that the insulin-induced autophosphorylation and activation of its receptor kinase represent an important event in the action of insulin on cell metabolism and growth. The fundamental research reviewed may be followed by the discovery of molecular receptor defects in clinical syndromes of insulin resistance.  相似文献   

13.
Summary The clinical potency of 3 drugs, apomorphine, N-propylnorapomorphine, and bromocryptine, have been found to be closely correlated to their potencies in competing for3H-haloperidol and3H-spiroperidol both of which label the dopamine receptor. This correlation indicates that the direct binding assay may be used to predict clinical potencies of anti-parkinsonian drugs, and indicates that agonists as well as antagonists compete potently for3H-neuroleptic binding.This work was supported by the Ontario Mental Health Foundation, the W. Garfield Weston Foundation and the Medical Research Council of Canada.  相似文献   

14.
The recent characterization of the human insulin receptor structure and its intrinsic tyrosine kinase activity represent major advances in our understanding of the mechanism of insulin action. It is reasonable to think that the insulin-induced autophosphorylation and activation of its receptor kinase represent an important event in the action of insulin on cell metabolism and growth. The fundamental research reviewed may be followed by the discovery of molecular receptor defects in clinical syndromes of insulin resistance.  相似文献   

15.
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.  相似文献   

16.
A diet containing 18-20 mg iron/kg to young weaned rats for 8 weeks altered the metabolism of gamma-aminobutyric acid and glutamate in the central nervous system without affecting blood hemoglobin. Subsequent rehabilitation with 390 mg iron/kg diet for 2 weeks normalized these changes.  相似文献   

17.
Summary Dendritic depolarization, which seems to be involved in the induction of long-term potentiation (LTP), was elicited by localized glutamate application. When paired to low frequency synaptic activation in the same area, the subsequent changes had features in common with LTP, expressed as an increased probability of firing and shorter spike latency. The EPSP was not significantly increased.  相似文献   

18.
Summary A diet containing 18–20 mg iron/kg to young weaned rats for 8 weeks altered the metabolism of gamma-aminobutyric acid and glutamate in the central nervous system without affecting blood hemoglobin. Subsequent rehabilitation with 390 mg iron/kg diet for 2 weeks normalized these changes.  相似文献   

19.
Dendritic depolarization, which seems to be involved in the induction of long-term potentiation (LTP), was elicited by localized glutamate application. When paired to low frequency synaptic activation in the same area, the subsequent changes had features in common with LTP, expressed as an increased probability of firing and shorter spike latency. The EPSP was not significantly increased.  相似文献   

20.
Dependence receptors: between life and death   总被引:2,自引:0,他引:2  
The recently described family of dependence receptors is a new family of functionally related receptors. These proteins have little sequence similarity but display the common feature of inducing two completely opposite intracellular signals depending on ligand availability: in the presence of ligand, these receptors transduce a positive signal leading to survival, differentiation or migration, while in the absence of ligand, the receptors initiate or amplify a negative signal for apoptosis. Thus, cells that express these proteins manifest a state of dependence on their respective ligands. The mechanisms that trigger cell death induction in the absence of ligand are in large part unknown, but typically require cleavage by specific caspases. In this review we will present the proposed mechanisms for cell death induction by these receptors and their potential function in nervous system development and regulation of tumorigenesis.Received 19 December 2003; received after revision 19 February 2004; accepted 26 February 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号