首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
钢的渗氮也称氮化,工件渗氮后具有较高的表面硬度和耐磨性,且疲劳强度和抗蚀性大大提高。本文针对一种实际氮势动态控制中供氨管路的参数进行了设计与验算,这是保证氮化工艺所要求的供氨能力所必须的。该设计与计算已由哈尔滨船舶工程学院自控系与北方电炉厂联合在为哈尔滨汽轮机厂研制的微机控制的氮化炉中得以实际应用,并取得满意的结果。  相似文献   

2.
研究结果表明:机械加工过程、曲轴材料、设备、电压与时间、炉罐氮化情况对R-175曲轴软氮化的质量影响较大。在加工过程中,必须根据实际情况及时调整曲轴软氮化工艺。  相似文献   

3.
介绍了以甲醇、煤油和氨作为渗剂,在实际生产条件下进行滴注式气体碳氮共渗工艺试验,将试验结果用数理统计的理论与方法建立了氧电势-碳势的数学模型,该数学模型用于齿轮碳氮共渗取得了令人满意的效果,根据渗层碳分布数学模型,对碳氮共渗过程的渗层深度和碳分布进行了计算机求解,计算值与实测值符合得较好。  相似文献   

4.
提出一种新的表面预处理工艺。经表面预处理后的21-4N奥氏体耐热钢能在NH_3+CO_2的气氛中进行软氮化。氮化层均匀。硬度高。对这种表面预处理的机理进行了初步探讨。  相似文献   

5.
氮化锰生产及结构分析   总被引:8,自引:0,他引:8  
介绍了利用金属锰粉采用固态氮化法生产氮化锰合金的原理和工艺,采用正交设计法,在实验室管式炉内、高温条件下利用纯氮(≥99.99%)对金属锰粉进行氮化.通过一系列实验得出了适宜的技术工艺参数,锰粉粒度为0.6 mm,氮化时间为4 h,氮化温度为700 ℃时,获得了含氮高达6.94%的氮化锰合金.通过物相分析和扫描电镜形貌分析,得出含氮高的氮化锰主要成分是Mn3N2,其次是Mn4N;含氮低的氮化锰主要成分是Mn2N,其次是Mn4N.此外还观测了氮化锰合金的形貌.  相似文献   

6.
研究了盐浴软氮化对42CrMo钢的摩擦性能的影响.对42CrMo进行盐浴软氮化处理,处理过的试件和未处理试件分别在不同的载荷和润滑情况下进行摩擦试验.结果表明,盐浴软氮化处理过的试件比未处理过试件的抗胶合能力至少提高了500 N.盐浴软氮化工艺能够有效地改善机车用大齿轮使用中胶合破坏严重的现状.  相似文献   

7.
快速碳氮共渗研究   总被引:1,自引:0,他引:1  
<正>碳氮共渗用于钢件表面化学热处理是一种行之有效的方法。它不仅由于碳氮原子的同时渗入,其渗层表面具有比渗碳更高的硬度、耐磨性和疲劳强度,而且有热处理以后变形小的特点。因此,碳氮共渗在国内外都得到了广泛的应用。对碳氮共渗机理的研究也日益加深。 传统的碳氮共渗工艺概括可分为固体、液体和气体三种。固体碳氮共渗由于生产效率低、劳动条件差,已很少应用。液休碳氮共渗以往常采用氰盐(NaCN、KCN等)作为共渗介质。由于氰盐极毒,易造成公害,因而它已被人们淘汰。目前,正在广泛使用的是气体碳氮共渗(包括软氮化),这朴工艺虽然效果良好,且无毒,但共渗时间仍然太长,生产效率无法再进一步提高。例如,共渗速度较快的软氮化工艺,共渗1~3小时,其渗层深度(包括扩散层)也只有0.1~0.2毫米。因此,国内外热处理工作者都在深入研究碳氮共渗的机理,寻找快速碳氮共渗的新方法、新工艺。 经过几年时间的探索和研究,我们找到了一种在含碳氮有机物的电解液中,用外加高压直流电的方法,把钢件作为阴极,促使碳氮原子从碳氮有机物中释放,并成为离子。碳氮离子在高压电场的作用下向钢件冲击;从而在短时间内使钢件表层的含碳量达到0.8%以上,含氮量达到0.45%以上。这已经达到了一般认为的气体碳氮共渗表层最佳碳氮浓度。大量实  相似文献   

8.
用离子软氮化工艺对船用活塞环进行了表面处理,测量了在不同条件下未经表面处理和表面经过离子软氮化处理的活塞环的磨损失重和摩擦系数,并对润滑油进行了光谱分析和铁谱分析.结果表明,在流体润滑和混合润滑状态,经离子软氮化处理的活塞环具有较高的耐磨性,且润滑性亦能得到改善,使缸套的磨损减小。  相似文献   

9.
笔者研究了稀土对球铁曲轴软氮化工艺及渗层硬度分布的影响.结果表明:加入稀土对球铁曲轴软氮化有明显的催渗作用,软氮化时间可缩短30%; 稀土催渗后,渗层硬度梯度趋向平缓.稀土催渗浮的球铁曲轴使用寿命提高10%.  相似文献   

10.
采用一种简单的电化学沉积和退火方法,实现了在碳布基底上碳氮结构修饰氮化钴(CC@Co2 N@CN)材料的制备,并将其用于高性能超级电容器.氮化钴表面修饰的碳氮结构不仅可以提高整个电极的电容,而且可以缓解氮化钴的氧化,从而提高整体的导电性能.同时,CC@Co2 N@CN表现出极长的寿命,在10000次循环后容量仍能保持其初始值的77%.在电流密度为1 m A·cm-2时,该电极的面积电容最高可达429.4 m F·cm-2.因为具有较大的面积电容和良好的循环稳定性能,此类基于碳布基底的氮化钴碳氮结构超级电容器在储能领域具有广阔的应用前景.  相似文献   

11.
开发一种新型含铌无铝渗氮钢,并对其力学性能和渗氮特性进行研究.结果表明,试验钢具有较高的强度、塑性及韧性;在相同渗氮条件下,试验钢渗层深度大,且硬度梯度缓和,具有优良的渗氮性能.  相似文献   

12.
应用氮势进行可控渗氮时,须用不同温度下出现化合物相的临界氮势曲线,作为可控渗氮工艺的主要依据。本文在建立临界氮势曲线计算方法及结果基础上,分析温度、时间、合金元素含量、渗氮气氛对临界氮势曲线的影响,得出结论:调整渗氮温度、渗氮气氛和氨流量,通过气氛氮势的变化,可有效地控制化合物层的形成。  相似文献   

13.
将低硬度材料(不锈钢)和高硬度材料(轴承钢)作为实验材料进行车削,通过在3种不同加工方式下(油膜附水滴切削液、乳化液、干切削)的切削对比,观察切削力、粗糙度变化规律。实验结果表明油膜附水滴切削液(Oil-on-Water)能有效地降低在切削过程中的切削力;而且在运用OoW切削液加工高硬度材料的时候工件表面质量有明显提高。但是在切削硬度低材料时OoW加工表面质量比干切削要差。为了提高硬度较低材料OoW切削加工表面质量,采用二阶曲面响应法,针对粗糙度受进给量、进给速度、吃刀量影响的问题进行建模和分析。  相似文献   

14.
通过在不同栽荷和摩擦状态下试验,考察了盐浴软氮化后50#钢试件的摩擦学性能。结果表明:盐浴软氮化处理可在试件表面形成氮化层,氮化层在干摩擦状态下的摩擦系数在0.333左右。当载荷为720N时,干摩擦状态下摩擦面的摩擦系数持续增加,但增量减少。此外,表面氮化层也提高了试件在干摩擦、栽荷小于等于396N条件下的抗磨损能力。  相似文献   

15.
制备高矫顽力Sm2Fe17Nx磁粉的氮化工艺与性能研究   总被引:5,自引:0,他引:5  
Sm2Fe17Nx是一种具有优异内禀磁性的永磁材料,但其对制备工艺参数相当敏感,不易稳定地制取高性能的Sm2Fe17Nx.因此,作者根据其特点,研究了氮化工艺参数与磁性能之间的关系,避免氮化过程中软磁相的产生和Sm2Fe17Nx的分解,以确立一种既经济又能稳定制取高性能Sm2Fe17Nx的氮化工艺  相似文献   

16.
氮在奥氏体不锈钢中的作用   总被引:16,自引:1,他引:16  
论述了在奥氏体不锈钢中适量加氮可以提高奥氏体组织稳定性、力学性能和部分抗腐蚀能力;表面渗氮技术,如等离子体源渗氮,使得奥氏体不锈钢的力学性能,抗腐蚀性能更加优异,同时指出有关氮化物析出的原因、条件以及对力学性能、抗腐蚀性能的一些负面影响,研究结果表明,由于氮价格十分低廉,可以部分甚至全部取代镍以及合金化展出现的优良性能,氮已经成为奥氏体不锈钢重要的合金化元素,氮合金化的研究日益受到各方面的关注。  相似文献   

17.
利用溶胶凝胶燃烧法制备的纳米级Fe泡沫,可以有效降低合成ε-Fe3N样品的氮化温度并缩短氮化时间,该Fe泡沫经400℃,0.5 h氮化即可得到纯相的ε-Fe3N粉末.磁性测量表明,所得ε-Fe3N样品具有良好的软磁性能和高频磁性能.  相似文献   

18.
含铜取向硅钢是一种成本低、成品率高的新型CGO取向硅钢.其制备工艺明显区别于主流的低温加热渗氮高磁感(HiB)取向硅钢,其产品的磁性能波动范围显著高于低温渗氮钢.本文对实际生产中收集到的一些含铜CGO钢成品板中的组织与磁性能进行研究分析,尝试建立不同组织和磁性能相互间的对应关系,并对磁性能波动现象进行分析.分析结果表明,含铜CGO钢成品板组织与抑制剂有明确的对应关系,而晶粒尺寸与Goss晶粒取向度并不完全呈对应关系.同时对热轧板中的异常组织进行了深入研究,认为热轧板表层脱碳区和中心层粗大形变晶粒的存在,直接影响了抑制剂的分布,导致最终成品板中组织和磁性能的波动.  相似文献   

19.
利用离子探针,电子探针等现代测试手段,研究了40Cr,35CrMo和38CrMoAlA钢分别经离子氮化和气体氮化处理后的试样离子氮化层中的氮化物形貌和元素氮、碳、铬、钼、铝的分布,为深入研究α状态渗氮层组织结构与磨损机理,提供了一定的理论依据;同时也为新的氮化钢种的研制和氮化工艺的选择与控制提供了重要信息。  相似文献   

20.
研究了钛催化渗氮的新工艺方法,对多种材料进行了渗氮处理。实验结果表明,这种方法与传统的气体氮化法或盐浴氮化法相比,具有化合物层厚度增加,表面硬度高,渗氮速度快,生产效率高的优点。是一种提高工具钢和模具钢性能的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号