首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poiseuille-Rayleigh-Bénard flows in binary fluids with Soret effect are directly simulated by a mixed finite element method. A temperature perturbation is used as an initial disturbed source for the basic parallel flows. The whole spatio-temporal evolution of the binary fluid flows is exhibited: initially only the disturbed mode with the wavenumber k=π is amplified while others are damped, and continuously the amplified mode grows further and the nonlinear effect becomes important; after a nonlinear evolution transition the flow system evolves finally into a periodic right traveling wave.  相似文献   

2.
A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system. Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.  相似文献   

3.
Two-dimensional(2-D)and three-dimensional(3-D)hybrid simulations are carried out for mode conversion from fast mode compressional wave to kinetic Alfvn waves(KAWs)at the inhomogeneous magnetopause boundary.For cases in which the incident fast wave propagates in the xz plane,with the magnetopause normal along x and the background magnetic field pointing along z,the 2-D (xz)simulation shows that KAWs with large wave number kxρi~1 are generated near the Alfve′n resonance surface,whereρi is the ion Larmor radius.Several nonlinear wave properties are manifest in the mode conversion process.Harmonics of the driver frequency are generated.As a result of nonlinear wave interaction,the mode conversion region and its spectral width are broadened.In the 3-D simulation,after this first stage of the mode conversion to KAWs with large kx,a subsequent generation of KAW modes of finite ky is observed in the later stage,through a nonlinear parametric decay process.Since the nonlinear cascade to ky can lead to massive transport at the magnetopause,the simulation results provide an effective transport mechanism at the plasma boundaries in space as well as laboratory plasmas.  相似文献   

4.
A nitrogen jet with subcritical and supercritical injection temperatures injected into a supercritical environment, in which both the pressure and temperature exceed those of the thermodynamic critical state, has been investigated numerically using large-eddy simulation technique. The effects of the injection temperature on the flow evolution are studied. We find that the jet surface is more unstable with the instability waves growing up and rolling into a succession of ring vortices for supercritical injection temperature, and the jet surface is nearly straight with the strong density stratification suppressing the development of the instability waves for subcritical injection temperature. With increasing injection temperature, the spatial growth rate of the surface instability wave strengthens and the frequency of the most unstable mode increases. This behavior is of importance in enhancing the fluid mixing effect. The results obtained in this study provide physical insight into the understanding of fundamental mechanisms of the jet evolution under supercritical conditions.  相似文献   

5.
This paper presents a sliding mode(SM) based identifier to deal with the parameter idenfification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system;an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.  相似文献   

6.
The advantages of permanent magnet linear synchronous motors (PMLSM) include high speed and good motion precision compared with rotary motors. However, PMLSM are sensitive to uncertainties such as the parameter perturbations and end effect etc. A new nonlinear robust scheme of PMLSM is proposed to overcome this trouble. First, a quasi-linearized and deeoupled model with uncertainties is derived from the mathematical model of PMLSM by using the conception of feedback linearization. Then a fixed-boundary-layer sliding mode controller using the m sat function is designed to guarantee the robustness. Design of a force observer is given to estimate the load force unknown in the new model. Finally, the validity of the proposed strategy compared with the conventional PID control scheme is proved by the DSpobased experimental results.  相似文献   

7.
A circuit model with lumped time-variable parameter is proposed to calculate the transient characteristic of grounding electrode under lightning current, which takes into consideration the dynamic and nonlinear effect of soil ionization around the grounding electrode. The ionization phenomena in the soil are simulated by means of time-variable parameters under appropriate conditions. The generated electromagnetic field in the air is analyzed by using electrical dipole theory and image theory when the lightning current flows into the grounding electrode. The influence of soil ionization on the electromagnetic field is investigated.  相似文献   

8.
Following Jaynes-cummings model, the evolutions of the field entropy in the system of a two-level atom interacting with the single mode coherent field are investigated under rotating-wave approximation. The typical case-the field frequency variance with time in the form of sine has been considered. The influences of the amplitude and angle frequency of the field frequency variance on entropy evolution of the field are discussed by numerical calculations.Calculation results indicate that the field frequency variance influences violently the behavior of field entropy evolution; the larger the amplitude of the field frequency variance is , the stronger the influence of the field frequency variance on the time evolution of field entropy is.  相似文献   

9.
The physical mechanism of the halo-chaos formation for a high intensity proton beam in a periodic-fo cusing channel is analyzed using the transfer mahix theory and a qualiative analysis method.Particles-in-cell simula tims are further used to explore the mechanism of the beam halo-chaos fomation, which concerns not only with thc non linear effect of the beam space charge but also with the lransverse energy exchange belween the particles and the particle core. as well as the chaos generated by the nonlinear resonance ovcrlap. A nonlinear control method is proposed for con trolling tie haho-chaos. Simulation results show lhal the melhod is efhclivc. Somc potemlial applications of the halo chaos conlrol in experimenls are discussed.  相似文献   

10.
In non-equilibrium nonlinear region, the nonlinear equations of time dependence of perturbation amplitude at the solid/liquid interface during solidification of a dilute binary alloy are established on the base of assuming that there is local equilibrium at the solid/liquid interface and considering that curvature, temperature and composition at the solid/liquid interface which are related to the perturbation amplitude are nonlinear. As a result, patterns at the solid/liquid interface during solidification process, which is from nonsteady state to steady state can be controlled by these nonlinear equations.  相似文献   

11.
In the last two decades, the damage detection for civil engineering structures has been widely treated as a modal analysis problem and most of the currently available vibration-based system identification approaches are based on modal parameters, namely the natural frequencies, mode shapes and damping ratios, and/or their derivations, which are suitable for linear systems. Nonlinearity is generic in engineering structures. For example, the initiation and development of cracks in civil engineering structures as typical structural damages are nonlinear process. One of the major challenges in damage detection, early warning and damage prognosis is to obtain reasonably accurate identification of nonlinear performance such as hysteresis which is the direct indicator of damage initiation and development under dynamic excitations. In this study, a general data-based identification approach for hysteretic performance in form of nonlinear restoring force using structural dynamic responses and complete and incomplete excitation measurement time series was proposed and validated with a 4-story frame structure equipped with smart devices of magneto-rheological (MR) damper to simulate nonlinear performance. Firstly, as an optimization method, the least-squares technique was employed to identify the system matrices of an equivalent linear system of the nonlinear structure model basing on the excitation force and the corresponding vibration measurements with impact test when complete and incomplete excitations; and secondly, the nonlinear restoring force of the structure was identified and compared with the test measurements finally. Results show that the proposed data-based approach is capable of identifying the nonlinear behavior of engineering structures and can be employed to evaluate the damage initiation and development of different structure under dynamic loads.  相似文献   

12.
A new compressibility modification k-ε model, including shock unsteadiness effect and the previous compressibility modification of pressure dilatation and dilatational dissipation rate, was developed with a simple formulation for numerical simulation in supersonic complex turbulent flows. The shock unsteadiness effect was modeled by inhibiting turbulent kinetic energy production in the governing equations of turbulent kinetic energy and the turbulent kinetic energy dissipation rate. Sarkar's correction models were employed accounting for the dilatational compressibility effects in the new model. Two types of flows, the free supersonic mixing layers and complex supersonic flow with transverse injection were simulated with different flow conditions. Comparisons with experimental data of the free supersonic mixing layers showed that the new compressibility modification k-ε model significantly inhibited the excessive growth of turbulent kinetic energy and improved predictions. On the supersonic mixing layer flows, prediction results with the new model were in close agreement with experimental data, accurately predicting the decreasing trend of the mixing layer spreading rate with the increase of the convective Mach number. Due to the complicated flow field with flow separation, shock unsteadi- ness modification inhibited excessive growth of the turbulent kinetic energy in shock regions and wider shock regions are predicted, thereby significantly improving results of the flow with a strong separation forecast. The flow separation was stronger, which was the primary modification effect of the new model. Predictions accord with experimental results even in strong separation flows.  相似文献   

13.
We present a novel and simple design of an air-slot mode-gap photonic crystal(PC) nanocavity by introducing a linear air slot to the center of a line-defect waveguide in a two dimensional triangular-lattice silicon PC slab.A high quality factor(Q factor) of 8.42*105 and an ultrasmall mode volume of 0.998 cubic wavelength are achieved in an optimized air-slot nanocavity which is a suitable choice for the strong matter-field interaction in free space.The high Q cavities with ultrasmall mode volume are important for applications such as quantum computation and nonlinear optics.  相似文献   

14.
A neural network model with a special structure, which is divided into linear and nonlinear parts, was proposed for identification of a nonlinear system. In this model, the nonlinear part of the object is treated as a measured disturbance, and is compensated by a feed forward method; an adaptive pole placement algorithm is used to control the linear part of the object. The simulation results show that the identification efficiency and accuracy are improved when the new controller is applied to sintering finish point control.  相似文献   

15.
The effect of four-dimensional variational data assimilation on the reduction of the forecast errors is investigated for both stable and unstable flows. Numerical results show that the effect is generally positive. Particularly,its effect is much more significant in the presence of nonlinear instability  相似文献   

16.
Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.  相似文献   

17.
Starting from Maxwell's equations for inhomogeneous media, nonlinear integral equations of the inverse problem of the electromagnetic tomography (EMT) are derived, whose kernel is the dyadic Green's function for the EMT sensor with a homogeneous medium in the object space. Then in terms of ill-posedness of the inverse problem, a Tikhonov-type regularization model is established based on a linearization-approximation of the nonlinear inverse problem. Finally, an iterative algorithm of image reconstruction based on the inverse problem and reconstruction images of some object flows for simplified sensor are given. Initial results of the image reconstruction show that the algorithm based on the inverse problem is superior to those based on the linear back-projection in the quality of image reconstruction.  相似文献   

18.
Gradient-dependent plasticity is introduced into the phenomenological Johnson-Cook model to study the effects of strain-hardening, strain rate sensitivity, thermal-softening, and microstructure. The microstructural effect (interactions and interplay among microstructures) due to heterogeneity of texture plays an important role in the process of development or evolution of an adiabatic shear band with a certain thickness depending on the grain diameter. The distributed plastic shear strain and deformation in the shear band are derived and depend on the critical plastic shear strain corresponding to the peak flow shear stress, the coordinate or position, the internal length parameter, and the average plastic shear strain or the flow shear stress. The critical plastic shear strain, the distributed plastic shear strain, and deformation in the shear band are numerically predicted for a kind of steel deformed at a constant shear strain rate. Beyond the peak shear stress, the local plastic shear strain in the shear band is highly nonuniform and the local plastic shear deformation in the band is highly nonlinear. Shear localization is more apparent with the increase of the average plastic shear strain. The calculated distributions of the local plastic shear strain and deformation agree with the previous numerical and experimental results.  相似文献   

19.
Two kinds of noise strategies in binary opinion dynamics on ER random networks are discussed. Random noise p1 in the initial configuration plays a role in redistributing the opinion states associated with the network. Under synchronous updating, the system can attain a stable state within few time steps. The fraction of nodes with changed opinion states F decreases exponentially with time, and the ratio of one of the two opinion states R remains almost unchanged during the evolution. The average ratio crosses at the half-half initial concentration under different p1. For noise in the dynamical evolution p2, the system can reach a steady state with small fluctuations. With larger p2, more nodes have changed opinion states at each updating and more nodes with opposite opinions coexist. If p2 is greater than 0.5, the two opinions coexist with equal support.  相似文献   

20.
A watermarking algorithm of binary images using adaptable matrix is presented. An adaptable matrix is designed to evaluate the smoothness and the connectivity of binary images. The watermark is embedded according to the adaptable matrix in this algorithm. In the proposed watermarking algorithm, each image block implements a XOR operation with the binary adaptable matrix, which has the same size with the image block, and in order to embed the watermark data, a multiplication operation are also implemented with the weight matrix. The experimental results show that proposed scheme has a good performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号