首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中微子振荡现象是当前粒子物理领域的研究热点.中微子振荡的发现确认了中微子具有微小的质量,这也成为探索超出标准模型新物理的重要途径.大亚湾反应堆中微子实验是研究短基线反应堆中微子振荡的地下实验,其利用远近点全同探测器对反应堆中微子事例率及能谱进行相对测量,以降低探测器关联误差及反应堆中微子流强预期误差.大亚湾反应堆中微子实验在2018年使用1958天的数据公布了中微子振荡参数sin~22θ_(13)与|?m_(32)~2|的最新结果,其中sin~22θ_(13)参数为目前最高的测量精度,达到了3.4%,|?m_(32)~2|的精度为2.8%,其与MINOS, NoνA及T2K等基于加速器中微子的实验测量精度相当.θ_(13)的精确测量将有利于下一代中微子实验确定中微子质量顺序以及测量CP破坏相角等未知的中微子振荡参数,其中包括了我国正在建设的江门中微子实验.它的主要科学目标是通过在中等基线下精确测量反应堆中微子能谱来确定中微子质量顺序.探测器可以实现3%的超高能量分辨率和小于1%的能标误差,从而在6年的取数时间内以3–4σ的置信度测量中微子质量顺序.此外江门中微子实验也将精确测量中微子振荡参数,同时将在超新星中微子、太阳中微子、大气中微子、地球中微子、核子衰变等物理研究领域做出重要的贡献.  相似文献   

2.
本书所汇编的文章简略地描述了在这个重大发现的近10年中我们对中微子振荡的理解。而中微子振荡的研究代表了超出标准模型的3个无质量中微子的新物理。它意味着中微子必须有质量。  相似文献   

3.
中微子物理是粒子物理中最活跃的分支之一,存在众多未解之谜,可能成为超出标准模型的新物理的突破口.本文总结了中微子物理的现状和主要的科学问题,着重介绍了我国正在进行的大亚湾中微子实验和建造中的江门中微子实验.通过研究反应堆中微子,2012年大亚湾实验发现新的中微子振荡,测得了中微子混合角13.本文介绍了大亚湾实验的物理背景和项目背景,简述了实验方法和设计思想,并描述了探测器设计和建造.许多新的想法和技术创新在探测器设计与建造中采用,使探测器相关的相对误差仅为0.2%.在未来几十年内,大亚湾将保持对这一基本参数的最高测量精度.江门中微子实验2008年提出建议,2013年正式启动.通过在53 km处探测反应堆中微子振荡,它将能确定中微子质量顺序,并精确测量3个中微子混合参数.采用一个设计能量精度为3%的2×104 t液体闪烁体探测器,江门实验在研究超新星中微子、太阳中微子、地球中微子、大气中微子、以及奇异现象寻找方面也极具吸引力.它将对多个物理目标进行国际领先水平的研究.文中我们介绍了实验设计和研发的进展.除了大亚湾和江门实验,我们也参与了无中微子双贝塔衰变实验EXO,设计了一个新式的加速器中微子束流线,进一步扩展了中微子研究.  相似文献   

4.
《广东科技》2012,21(10)
近日,大亚湾中微子实验室发现了一种新的中微子振荡,并测量到其振荡几率。这一重要成果是对物质世界基本规律的新认识,对中微子物理未来发展方向起到了决定性作用,并将有助于破解宇宙中“反物质消失之谜”。  相似文献   

5.
粒子物理的标准模型认定中微子静质量mv=0,超神冈实验指出mv≠0,据此用第一代中微子的质量mv,(即“反常质量”),导出二、三两代中微子的“反常质量”mvμ,mvτ.进而求出中微子混合的重要参数:代际中微子质量平方差(m^2vi-m^2vj达量级之大(i≠j),卡比玻角θc亦与夸克混合角相近,认为中微子应存在混合和振荡.并对混合和振荡的物理机制作了讨论.  相似文献   

6.
《前沿科学》2012,(1):F0002-F0002
日前,大亚湾中微子实验国际合作组宣布发现了新的中微子振荡,并测量到其振荡凡率。这将对中微子物理未来发展起决定性作用,并有助破解宇宙中“反物质消失之谜”。这是探索宇宙起源的一个重要组成部分。从目前来看,中微子除了可以监测核武器制造外,还可以直接穿过地球进行通信,让全球通讯无界限,比现在的通信快得多;此外,  相似文献   

7.
继大亚湾反应堆中微子实验之后,由中国主持的第二个大型中微子实验——江门地下中微子实验将于今年年底动工。由来自全世界50多个科研机构和大学的200多位科学家组成的江门地下中微子实验国际合作组近日正式成立。中微子是一种基本粒子,在微观的粒子物理和宏观的宇宙起源及演化中都扮演着极为重要的角色。2012年,由中国科学家主持的大亚湾反应堆中微子实验发现了中微子第三种振荡模式。  相似文献   

8.
该文首先探讨了模型化的中微子在物质中振荡和混合的分析解,然后让中微子的CP违反相位旋转360°获得中微子振荡和混合的几何相位,发现几何相位随能量的振动具有非对称性几何结构.几何相位是描述中微子传播过程中内禀属性,故这种非对称结构起源于中微子振荡和混合的CP违反现象.因此,几何相位为中微子传播过程中的CP违反现象提供了线索.  相似文献   

9.
 美国东部时间2018年7月12日11时,冰立方中微子天文望远镜团队宣布天文学领域的又一重大发现:架设在南极的望远镜实时预警系统于世界协调时间2017年9月22日20:54:30.43探测到一个能量约为290 TeV的高能缪子中微子(muon neutrino),并命名为Ice-Cube-170922A。这是首个拥有银河系之外源头的超高能中微子事件。对此本刊专访了曾在冰立方中微子天文台工作的青年科学家徐东莲博士,目前是李政道青年学者和上海交通大学物理与天文学院特聘副教授,研究方向为高能天体中微子和中微子天文。  相似文献   

10.
 大亚湾中微子实验发现了中微子第三种振荡模式,成为了中国物理学史上新的里程碑式发现,大亚湾的实验者们迎来了全世界的注目和掌声。这项成果不仅令实验者欢欣,还鼓舞了中国另一支研究力量——他们一直在中微子乃至粒子物理理论领域深耕,追踪大亚湾这样大型实验的进展,通过理论预言实验结果或者通过实验结果验证理论预言,去伪存真,一步步靠近人类苦苦探寻的自然规律。只是他们的研究成果不能被迅速验证是否成功,因为一项理论的突破往往要经过漫长的考验。此次大亚湾中微子实验的成功加速了中微子物理理论研究的进展,可以说为中微子研究开启了新的时代。  相似文献   

11.
据高能中微子的"长基线"实验计设参数,用数值实验常数相关联的唯象方法算出中微子质量数值,估算了中微子振荡几率,判断了μ中微子vμ与τ型中微子vτ最可能发生振荡.  相似文献   

12.
本文首先申述了中微子的假说和中微子的发现,进而从中微子实验、中微子振荡和大统一理论综述、讨论中微子质量问题.  相似文献   

13.
粒子物理的标准模型并不是完美的,对大气中微子流和太阳中微子流的测量提供了中微子振荡的证据,证明中微子非简并的质量和混合.研究了Hung模型,并计算了muon衰变的振幅.  相似文献   

14.
方晨 《科学世界》2012,(5):4-11
3月8日,大亚湾中微子实验国际合作组宣布发现了第三种中微子振荡并精确测量到其振荡几率。李政道先生评价道:“这是物理学上具有重要基础意义的一项重大成就”。那么,到底什么是第三种中微子振荡?科学家们是如何发现它的?这个发现对物理学的意义是什么?  相似文献   

15.
介绍了2个太阳中微子问题和解决太阳中微子问题的几种可能解释,并详细讨论了太阳中微子振荡方案.如果采用小混合角(SMA)方案,那么,这2种味的中微子的质量之差不超过2.323 78×10-3 eV;如果用真空振荡(VAC)方案,那么,这2种味的中微子的质量之差不超过8.944 2×10-6 eV.认为如果中微子是暗物质的候选者,且中微子的静止质量要大于1 eV,那么2种中微子质量之差至多为2.7×10-6 eV.  相似文献   

16.
吕磊  王玉霞  熊兆华 《科技资讯》2009,(16):238-239
中微子振荡是存在有超出标准模型的新物理的第一个直接证据。本文回顾了中微子理论与实验研究的发展历程,重点介绍了中微子混合矩阵参数化的发展,进一步讨论了带电轻子的味破坏。  相似文献   

17.
《科学世界》2012,(4):12-12
北京时间2012年3月8日14时,大亚湾中微子实验国际合作组发言人王贻芳在北京宣布,大亚湾中微子实验发现了一种新的中微子振荡,并测量到其振荡几率。  相似文献   

18.
中微子是宇宙中最古老、数量最多的物质粒子,从宇宙诞生的大爆炸起就充斥在整个宇宙空间. 中微子非常重要,它拯救了能量守恒定律,也向现代粒子物理的"标准模型"提出了挑战.中微子不仅数量很多,而且它有无质量对粒子物理和宇宙学有巨大的影响.  相似文献   

19.
研究太阳中心的核反应对太阳中微子问题的解释至关重要 ,也是当前太阳振动测量中最为困难的问题 .通过对p pI核反应链中密度的时间变化研究发现 ,在从 0 0 90 2R⊙ 到0 1 5 0 7R⊙ 的中心区域内 ,3 He的粒子数密度恰好以 5min左右的周期随时间振荡 .这类振荡可以引起太阳核能产生的周期变化 ,从而改变了太阳中微子的产生率 .  相似文献   

20.
张丹 《科技信息》2012,(1):137-137,129
中微子是基本粒子家族中重要且具有特色的成员之一,是唯一只参与弱相互作用的粒子。泡利提出中微子假说之后,人们进行了一系列捕获中微子的实验。其中中微子的质量问题和中微子振荡现象是研究的热门课题。2011年9月意大利研究人员在实验中发现中微子超光速。这些引起理论界和实验界的争议,更将引发物理学家对中微子的不解之谜的探索和新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号