首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
N.Ganesan在[1]中证明:若R是具有n(≥2)个零因子的交换环,则R的元数|R|有上界n~2。本文证明,当|R|≠n~2,(n>2)时,|R|的上界为n(n-2),并给出|R|=n(n-2)时R的分类。在本文中,R恒表示具有n(>2)个零因子的交换环。主要结论是: 定理1.设R是具有n个零因子的交换环,N是R的幂零根,|R|≠n~2,则|R|≤n(n-2)。这里n>2,当N≠0;n>3,当N=0。  相似文献   

2.
具有有限左零因子的一类环的结构   总被引:3,自引:0,他引:3  
本文的环,概指结合环.设 R 是具有 n(n≥2)个左(右)零因子的环,[1]证明|R|≤n~2,并且,当|R|=n~2时,n=P~s,P 是素数;[2]决定了当 R 是交换环且|R|=n~2时 R 的结构,本文讨论非交换的情形,决定具有 n(n≥2)个左(右)零因子而元数为竹 n~2的环的结构.  相似文献   

3.
K.Koh曾证明具有n(n≥2)个左(右)零因子的环R有限环且|R|≤n~2。本文证明了具有n(n≥2)个左(右)零因子的环R在|R|相似文献   

4.
一类有限环     
设R是具有n(n≥2)个左零因子的非交换环,本文证明了当|R|(?)n~2时,R有上界n(n-2),并对R达到上界时进行了讨论。  相似文献   

5.
描述了_n型仿射Weyl群a值为5的A_2×A_(12)×A_(11)型左胞腔的个数.通过计算得到:当n=7时,这样的左胞腔个数为32;当n≥8时,左胞腔个数为1/12(n~4-2n~3-55n~2+224n-204).  相似文献   

6.
研究了模n剩余类环Zn的零因子图的补图的类数.通过讨论n的素因子个数,利用完全图、完全二部图的类数公式以及有关类数的下界公式和嵌入技巧,证明了模n剩余类环Zn的零因子图的补图的类数不超过5,当且仅当n=6,8,10,12,14,15,16,18,20,21,22,27,33,35,55,77,p2,其中p为素数.并且分类了模n剩余类环Zn的零因子图的补图的类数分别为0,1,2,3,4,5的情形.  相似文献   

7.
讨论了某类具有n(n>5)个零因子的交换环R,当n(n-6) |R|<(n-3)2时的构造,推广了有关文献的结果.  相似文献   

8.
描述了_n型仿射Weyl群a值为5的A_2×A_(11)×A_(11)型左胞腔的个数.计算出当n=6时,这样的左胞腔个数为164;当n≥7时,左胞腔个数为1/2(5n~2-17n+138).  相似文献   

9.
在Entringer.R.C.[2]中的主要结果是:关于互素链的个数S(n),得到logS(n)~n~(1/2),并且,对S(n)的上界,得到S(n)相似文献   

10.
交换环R的零因子图是一个简单图Γ(R),其顶点集为R的非零零因子集合D(R)*,两个不同的顶点x与y有一条边相连当且仅当xy=0。研究模n高斯整数环Zn[i]的零子图Γ(Zn[i])的直径、平面性和围长等问题,得到了比较完整的结果。  相似文献   

11.
利用整除的性质,研究了二次多项式n~2±n c表素数与合数的问题,给出了Beeger的多项式n~2–n 72491在0≤n≤11000时表素数的个数.  相似文献   

12.
本文将讨论剩余类环Z的幂零元的个数问题,并给出其个数公式,类似地,还给出E_p[x]/(f(x))中幂零元的个数公式引理设(?)是环Z(?)的元素,n的既约因子分解为n=P_1~(r_1)p_2~(r_2)…P(?)其中p_1,p_2…p(?)是互异素数,r_1,r_2,…,r(?)为正整数,则(?)为Z(?)的幂零元的充分必要条件是p_1p_2…p|a。定理对于给定的正整数n,若其既约因子分解为n=P_1~(r_1)p_2~(r_2)…P(?),其中p_1,p_2,…p(?)为互异素数,r_1,r_2,…,r(?)是正整数,则Z所含幂零元的个数为  相似文献   

13.
设R是带有1的交换环,环R的零因子图Γ(R)是一个简单图,其中图的顶点是R的所有非零的零因子,且顶点x与顶点y有边当且仅当x≠y,且xy=0.文章主要刻画了一类有限交换局部环,使得它们的零因子图是恰有2个中心且带刺的完全图.  相似文献   

14.
讨论了带有非零导子的结合环的交换性,证明了:定理1 R是特征非2的素环,f,g为R的两个非零导子,若有自然数n使得x~nfg(y)-fg(y)x~n∈Z(R) (?)x,y∈R则R可换.定理3 R为无零因子环,d为R的非零导子,若(?)x∈R,d~n_x∈Z(R)且R的特征不是(n+1)1的因子,则R可换.定理5 若素环R的特征不为2,U为R的非零Lie理想,且(?)u∈U有udu+duu∈Z(R),则u~2∈Z(R)且当u~2∈U时,U(?)Z(R).  相似文献   

15.
更新最小生成树问题,即已知图的最小生成树,当图的某条边的赋值被改变,如何快速有效的求新出的最小生成树.本文引进了∑-树结构,并以此获得了一个快速有效的更新最小生成树的并行算法,并行时间为O(logn),处理器个数为O(n~(4/(?)),计算模型为CREW-PRAM.其中n 为图的顶点个数,而且,进行预处理所需的时问也只需O(log~2n),处理器个数为O(n~(?)),存贮数据所需的空间为O(n~(?)).  相似文献   

16.
具有零因子的一类代数   总被引:2,自引:0,他引:2  
[1]决定了具有 n(n≥2)个零因子且元数为 n~2的有限交换环的结构,本文考查代数的情形,将元数换成极大无关组所含元素的个数,决定相应的代数的结构.设 F 是特征零的域,K 是 F 上 n 次扩域,命A={(a,b)|a,b∈K},规定 A 的纯量乘法、加法、乘法分别为:α(a,b)=(αa,αb),Aα∈F,(a,b)+(c,d)=(α+c,b+d),(a,b)·(c,d)=(ac,ad+bc),  相似文献   

17.
一个环R叫做weakly J~#-clean环,如果R中的每一个元素都可以写成a=e+j或a=-e+j的形式,其中e是幂等元,jn属于Jacobson根.在这篇文章中我们证明了R是weakly nil-clean环当且仅当R是weakly J~#-clean环并且J(R)是幂零的.如果I是幂零的,那么R是weakly J~#-clean环当且仅当R/I是weakly J~#-clean环.环R是weakly J~#-clean环当且仅当R/P(R),R×M和幂级数环R[[x]]分别为weakly J~#-clean环.更进一步我们证明以下几点是分别等价的:R是J~#-clean环;存在一个大于等于1的整数n,使得Tn(R)是J~#-clean环;存在一个大于等于2的整数n,使得Tn(R)是weakly J~#-clean环.而且,R是J~#-clean环;存在一个大于等于1的整数n,使得×nR是J~#-clean环;存在一个大于等于2的整数n,使得×nR是weakly J~#-clean环.特殊的,阐述了在某种条件下S=R[D,C]是weakly J~#-clean环.  相似文献   

18.
本文主要讨论了含单位元的无零因子环内特征与交换的关系,得到如下主要结果: 定理1 设R是一个含单位元且无零因子的环,|R|≥p,且~a∈R,(a+e)~p=a~p+e,则charR=p。 定理2 设R是一个含单位元且无零因子的环,存在质数p>1,p≠CharR,使得~a∈R,(a+e)~p=a~p+e,则R为一个有限域。 定理3 假设1)R是一个特征为零的、含单位元、无零因子的环; 2)~x,y∈R,存在整数a_1,a_2,a_3,b_1,b_2,b_3使得:a_1xy~2+a_2yxy+a_3x~2y+b_1xyx+b_2yx~2+b_3y~2x=0则当R为可换时,(a_1+2b_3)(2a_1+a_2)(b_2+2a_3)(2b_1+b_2)≠0 反之,当此式左端任一因子不为零时,R为一个交换环。  相似文献   

19.
首先, 证明含单位元的结合环R是左广义弱零插入(GWZI)环当且仅当对任意的a,b∈R, ab=0蕴含存在正整数n, 使得anRb=0; 其次, 利用矩阵分块方法证明环R是左GWZI环当且仅当对任意的整数n≥2, Sn(R)是左GWZI环.  相似文献   

20.
讨论了一般Von Neumann正则环上的零因子图结构,重点刻画了其连通性和顶点性质.若R是有单位元的正则环,则其零因子图Γ(R)连通当且仅当R是直有限的;若R是无单位元的正则环,则其零因子图Γ(R)连通当且仅当R无真的单边恒等元;若R是满足|R|≥ 5的正则环,则其零因子图Γ(R)的源点和收点可以刻画为Sour(R)={a∈R|a是右可逆的但左不可逆},Sink(R)={a∈R|a是左可逆的但右不可逆}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号