首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Mantle plumes: Why the current skepticism?   总被引:1,自引:0,他引:1  
The present reappraisal of the mantle plume hypothesis is perhaps the most exciting current debate in Earth science. Nevertheless, the fundamental reasons for why it has arisen are often not well understood. They are that 1) many observations do not agree with the predictions of the original model, 2) it is possible that convection of the sort required to generate thermal plumes in the Earth's mantle does not occur, 3) so many variants of the original model have been invoked to accommodate conflicting data that the plume hypthesis is in practice no longer testable, and 4) alternative models are viable, though these have been largely neglected by researchers. Regardless of the final outcome, the present vigorous debate is to be welcomed since it is likely to stimulate new discoveries in a way that unquestioning acceptance of the conventional plume model will not.  相似文献   

2.
Class C  Goldstein SL 《Nature》2005,436(7054):1107-1112
Degassing of the Earth's mantle through magmatism results in the irreversible loss of helium to space, and high (3)He/(4)He ratios observed in oceanic basalts have been considered the main evidence for a 'primordial' undegassed deep mantle reservoir. Here we present a new global data compilation of ocean island basalts, representing upwelling 'plumes' from the deep mantle, and show that island groups with the highest primordial signal (high (3)He/(4)He ratios) have striking chemical and isotopic similarities to mid-ocean-ridge basalts. We interpret this as indicating a common history of mantle trace element depletion through magmatism. The high (3)He/(4)He in plumes may thus reflect incomplete degassing of the deep Earth during continent and ocean crust formation. We infer that differences between plumes and the upper-mantle source of ocean-ridge basalts reflect isolation of plume sources from the convecting mantle for approximately 1-2 Gyr. An undegassed, primordial reservoir in the mantle would therefore not be required, thus reconciling a long-standing contradiction in mantle dynamics.  相似文献   

3.
Jellinek AM  Manga M 《Nature》2002,418(6899):760-763
Seismological observations provide evidence that the lowermost mantle contains superposed thermal and compositional boundary layers that are laterally heterogeneous. Whereas the thermal boundary layer forms as a consequence of the heat flux from the Earth's outer core, the origin of an (intrinsically dense) chemical boundary layer remains uncertain. Observed zones of 'ultra-low' seismic velocity suggest that this dense layer may contain metals or partial melt, and thus it is reasonable to expect the dense layer to have a relatively low viscosity. Also, it is thought that instabilities in the thermal boundary layer could lead to the intermittent formation and rise of mantle plumes. Flow into ascending plumes can deform the dense layer, leading, in turn, to its gradual entrainment. Here we use analogue experiments to show that the presence of a dense layer at the bottom of the mantle induces lateral variations in temperature and viscosity that, in turn, determine the location and dynamics of mantle plumes. A dense layer causes mantle plumes to become spatially fixed, and the entrainment of low-viscosity fluid enables plumes to persist within the Earth for hundreds of millions of years.  相似文献   

4.
利用三维数值模拟方法,根据地幔对流控制方程,以180 Ma喷发的Ferrar大火成岩省(LIP)为例,在模型中引入Pangea超大陆、大型横波低速带(LLSVPs)和Pangea超大陆边缘的俯冲带,模拟地幔对流过程,研究其对应地幔热柱从地球内部热边界层(例如核幔边界)的生成过程,并讨论导致该地幔柱产生的相关因素.结果表...  相似文献   

5.
Lin SC  van Keken PE 《Nature》2005,436(7048):250-252
The hypothesis that a single mushroom-like mantle plume head can generate a large igneous province within a few million years has been widely accepted. The Siberian Traps at the Permian-Triassic boundary and the Deccan Traps at the Cretaceous-Tertiary boundary were probably erupted within one million years. These large eruptions have been linked to mass extinctions. But recent geochronological data reveal more than one pulse of major eruptions with diverse magma flux within several flood basalts extending over tens of million years. This observation indicates that the processes leading to large igneous provinces are more complicated than the purely thermal, single-stage plume model suggests. Here we present numerical experiments to demonstrate that the entrainment of a dense eclogite-derived material at the base of the mantle by thermal plumes can develop secondary instabilities due to the interaction between thermal and compositional buoyancy forces. The characteristic timescales of the development of the secondary instabilities and the variation of the plume strength are compatible with the observations. Such a process may contribute to multiple episodes of large igneous provinces.  相似文献   

6.
Anisotropy of thermal diffusivity in the upper mantle.   总被引:4,自引:0,他引:4  
A Tommasi  B Gibert  U Seipold  D Mainprice 《Nature》2001,411(6839):783-786
Heat transfer in the mantle is a key process controlling the Earth's dynamics. Upper-mantle mineral phases, especially olivine, have been shown to display highly anisotropic thermal diffusivity at ambient conditions, and seismic anisotropy data show that preferred orientations of olivine induced by deformation are coherent at large scales (>50 km) in the upper mantle. Thus heat transport in the upper mantle should be anisotropic. But the thermal anisotropy of mantle minerals at high temperature and its relationship with deformation have not been well constrained. Here we present petrophysical modelling and laboratory measurements of thermal diffusivity in deformed mantle rocks between temperatures of 290 and 1,250 K that demonstrate that deformation may induce a significant anisotropy of thermal diffusivity in the uppermost mantle. We found that heat transport parallel to the flow direction is up to 30 per cent faster than that normal to the flow plane. Such a strain-induced thermal anisotropy implies that the upper-mantle temperature distribution, rheology and, consequently, its dynamics, will depend on deformation history. In oceans, resistive drag flow would result in lower vertical diffusivities in both the lithosphere and asthenosphere and hence in less effective heat transfer from the convective mantle. In continents, olivine orientations frozen in the lithosphere may induce anisotropic heating above mantle plumes, favouring the reactivation of pre-existing structures.  相似文献   

7.
Stuart FM  Lass-Evans S  Fitton JG  Ellam RM 《Nature》2003,424(6944):57-59
The high 3He/4He ratio of volcanic rocks thought to be derived from mantle plumes is taken as evidence for the existence of a mantle reservoir that has remained largely undegassed since the Earth's accretion. The helium isotope composition of this reservoir places constraints on the origin of volatiles within the Earth and on the evolution and structure of the Earth's mantle. Here we show that olivine phenocrysts in picritic basalts presumably derived from the proto-Iceland plume at Baffin Island, Canada, have the highest magmatic 3He/4He ratios yet recorded. A strong correlation between 3He/4He and 87Sr/86Sr, 143Nd/144Nd and trace element ratios demonstrate that the 3He-rich end-member is present in basalts that are derived from large-volume melts of depleted upper-mantle rocks. This reservoir is consistent with the recharging of depleted upper-mantle rocks by small volumes of primordial volatile-rich lower-mantle material at a thermal boundary layer between convectively isolated reservoirs. The highest 3He/4He basalts from Hawaii and Iceland plot on the observed mixing trend. This indicates that a 3He-recharged depleted mantle (HRDM) reservoir may be the principal source of high 3He/4He in mantle plumes, and may explain why the helium concentration of the 'plume' component in ocean island basalts is lower than that predicted for a two-layer, steady-state model of mantle structure.  相似文献   

8.
Mapping the Hawaiian plume conduit with converted seismic waves   总被引:4,自引:0,他引:4  
Li X  Kind R  Priestley K  Sobolev SV  Tilmann F  Yuan X  Weber M 《Nature》2000,405(6789):938-941
The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (< 4 km s(-1)) starting at 130-140 km depth beneath the central part of the island of Hawaii and extending deeper into the upper mantle. We also find that the upper-mantle transition zone (410-660 km depth) appears to be thinned by up to 40-50 km to the south-southwest of the island of Hawaii. We interpret these observations as localized effects of the Hawaiian plume conduit in the asthenosphere and mantle transition zone with excess temperature of approximately 300 degrees C. Large variations in the transition-zone thickness suggest a lower-mantle origin of the Hawaiian plume similar to the Iceland plume, but our results indicate a 100 degrees C higher temperature for the Hawaiian plume.  相似文献   

9.
The chemical structure of the Hawaiian mantle plume   总被引:4,自引:0,他引:4  
Ren ZY  Ingle S  Takahashi E  Hirano N  Hirata T 《Nature》2005,436(7052):837-840
The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes--even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume.  相似文献   

10.
王斌  赵树行  李晓伟  裴付龙 《科技信息》2011,(31):I0027-I0028
随着板块构造的发展和成熟,人们对地球表层的认识已经逐渐清晰起来,地球深层的动力机制还在进一步的认识中,地幔柱是个很值得研究的理论,从热点学说到地幔柱再到超级地幔柱和地幔柱构造,尽管地幔柱在解释地球现象的时候还有很多不尽人意的地方.更需要我们积极的去怀疑或者证实。峨眉山玄武岩被认为是地幔柱头的结果,它的喷发持续时间,物质来源,和古地磁的关系,和生物灭绝的关系以及潘基亚大陆的演化还在进一步的研究中。  相似文献   

11.
Thompson RN  Gibson SA 《Nature》2000,407(6803):502-506
Both scaled laboratory experiments and numerical models of terrestrial mantle plumes produce 'balloon-on-a-string' structures, with a bulbous head followed by a stem-like tail. Discussions have focused on whether their initial upwelling heads are hotter than the tails or cooler, as a result of entrainment of ambient mantle during ascent, and also on whether initial plume upwelling is a newtonian or non-newtonian process. The temperature of the mantle delivered to the base of the lithosphere is a critical parameter in such debates. Dry continental magmas can normally contribute little to this topic because their hottest (ultramafic) examples can be expected to be trapped, owing to their density, beneath the Moho. Here we report a rare case in which olivine (with 93.3% forsterite; Mg2SiO4) phenocrysts, precipitated from an unerupted komatiitic melt (approximately 24% MgO) of the Tristan mantle plume head 132 Myr ago, were carried to upper-crust levels in northwest Namibia by less Mg-rich (9.6-18.5% MgO) magmas. We infer that the hidden melt, generated when the plume impinged on the base of the lithosphere, originated in the mantle with a potential temperature of approximately 1,700 degrees C. This is approximately 400 degrees C above ambient and much hotter than the temperatures previously calculated for steady-state Phanerozoic mantle plumes. Published data show that the same conclusion can be reached for the initial Iceland and Galapagos plumes.  相似文献   

12.
Anderson DL  Natland JH 《Nature》2007,450(7169):E15; discussion E16
Geophysical hotspots have been attributed to partially molten asthenosphere, fertile blobs, small-scale convection and upwellings driven by core heat. Most are short-lived or too close together to be deeply seated, and do not have anomalous heat flow or temperature; many are related to tectonic features. Bourdon et al. investigate the dynamics of mantle plumes from uranium-series geochemistry and interpret their results as evidence for thermal plumes. Here we show why alternative mechanisms of upwelling and melting should be considered.  相似文献   

13.
太平洋板块边界和内部均发育大量火山,是研究地球火山的天然实验场。综述了太平洋火山特征与深部成因机制,表明研究人员对地球不同环境下的火山(包括大洋中脊、俯冲带岛弧、板内地幔柱等)进行了系统性研究,分别构建了减压熔融、俯冲板片脱水与富水地幔楔熔融、地幔柱高温熔融的经典模式。但目前学界对于板内非地幔柱型火山的深部岩浆起源以及浅部喷发通道等重要科学问题仍缺乏清晰的认识。未来需要采用创新观测手段,开展多学科交叉研究以取得突破。  相似文献   

14.
Mukhopadhyay S 《Nature》2012,486(7401):101-104
The isotopes (129)Xe, produced from the radioactive decay of extinct (129)I, and (136)Xe, produced from extinct (244)Pu and extant (238)U, have provided important constraints on early mantle outgassing and volatile loss from Earth. The low ratios of radiogenic to non-radiogenic xenon ((129)Xe/(130)Xe) in ocean island basalts (OIBs) compared with mid-ocean-ridge basalts (MORBs) have been used as evidence for the existence of a relatively undegassed primitive deep-mantle reservoir. However, the low (129)Xe/(130)Xe ratios in OIBs have also been attributed to mixing between subducted atmospheric Xe and MORB Xe, which obviates the need for a less degassed deep-mantle reservoir. Here I present new noble gas (He, Ne, Ar, Xe) measurements from an Icelandic OIB that reveal differences in elemental abundances and (20)Ne/(22)Ne ratios between the Iceland mantle plume and the MORB source. These observations show that the lower (129)Xe/(130)Xe ratios in OIBs are due to a lower I/Xe ratio in the OIB mantle source and cannot be explained solely by mixing atmospheric Xe with MORB-type Xe. Because (129)I became extinct about 100 million years after the formation of the Solar System, OIB and MORB mantle sources must have differentiated by 4.45 billion years ago and subsequent mixing must have been limited. The Iceland plume source also has a higher proportion of Pu- to U-derived fission Xe, requiring the plume source to be less degassed than MORBs, a conclusion that is independent of noble gas concentrations and the partitioning behaviour of the noble gases with respect to their radiogenic parents. Overall, these results show that Earth's mantle accreted volatiles from at least two separate sources and that neither the Moon-forming impact nor 4.45 billion years of mantle convection has erased the signature of Earth's heterogeneous accretion and early differentiation.  相似文献   

15.
The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.  相似文献   

16.
Campbell IH  O'Neill HS 《Nature》2012,483(7391):553-558
The (142)Nd/(144)Nd ratio of the Earth is greater than the solar ratio as inferred from chondritic meteorites, which challenges a fundamental assumption of modern geochemistry--that the composition of the silicate Earth is 'chondritic', meaning that it has refractory element ratios identical to those found in chondrites. The popular explanation for this and other paradoxes of mantle geochemistry, a hidden layer deep in the mantle enriched in incompatible elements, is inconsistent with the heat flux carried by mantle plumes. Either the matter from which the Earth formed was not chondritic, or the Earth has lost matter by collisional erosion in the later stages of planet formation.  相似文献   

17.
The return of subducted continental crust in Samoan lavas   总被引:1,自引:0,他引:1  
Substantial quantities of terrigenous sediments are known to enter the mantle at subduction zones, but little is known about their fate in the mantle. Subducted sediment may be entrained in buoyantly upwelling plumes and returned to the Earth's surface at hotspots, but the proportion of recycled sediment in the mantle is small, and clear examples of recycled sediment in hotspot lavas are rare. Here we report remarkably enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures in Samoan lavas from three dredge locations on the underwater flanks of Savai'i island, Western Samoa. The submarine Savai'i lavas represent the most extreme 87Sr/86Sr isotope compositions reported for ocean island basalts to date. The data are consistent with the presence of a recycled sediment component (with a composition similar to the upper continental crust) in the Samoan mantle. Trace-element data show affinities similar to those of the upper continental crust--including exceptionally low Ce/Pb and Nb/U ratios--that complement the enriched 87Sr/86Sr and 143Nd/144Nd isotope signatures. The geochemical evidence from these Samoan lavas significantly redefines the composition of the EM2 (enriched mantle 2; ref. 9) mantle endmember, and points to the presence of an ancient recycled upper continental crust component in the Samoan mantle plume.  相似文献   

18.
Up to 10 per cent of the ocean floor consists of plateaux--regions of unusually thick oceanic crust thought to be formed by the heads of mantle plumes. Given the ubiquitous presence of recycled oceanic crust in the mantle source of hotspot basalts, it follows that plateau material should also be an important mantle constituent. Here we show that the geochemistry of the Pleistocene basalts from Logudoro, Sardinia, is compatible with the remelting of ancient ocean plateau material that has been recycled into the mantle. The Sr, Nd and Hf isotope compositions of these basalts do not show the signature of pelagic sediments. The basalts' low CaO/Al2O3 and Ce/Pb ratios, their unradiogenic 206Pb and 208Pb, and their Sr, Ba, Eu and Pb excesses indicate that their mantle source contains ancient gabbros formed initially by plagioclase accumulation, typical of plateau material. Also, the high Th/U ratios of the mantle source resemble those of plume magmas. Geochemically, the Logudoro basalts resemble those from Pitcairn Island, which contain the controversial EM-1 component that has been interpreted as arising from a mantle source sprinkled with remains of pelagic sediments. We argue, instead, that the EM-1 source from these two localities is essentially free of sedimentary material, the geochemical characteristics of these lavas being better explained by the presence of recycled oceanic plateaux. The storage of plume heads in the deep mantle through time offers a convenient explanation for the persistence of chemical and mineralogical layering in the mantle.  相似文献   

19.
Bourdon B  Ribe NM  Stracke A  Saal AE  Turner SP 《Nature》2006,444(7120):713-717
The long-standing paradigm that hotspot volcanoes such as Hawaii or Iceland represent the surface expression of mantle plumes--hot, buoyant upwelling regions beneath the Earth's lithosphere--has recently been the focus of controversy. Whether mantle plumes exist or not is pivotal for our understanding of the thermal, dynamic and compositional evolution of the Earth's mantle. Here we show that uranium-series disequilibria measured in hotspot lavas indicate that hotspots are indeed associated with hot and buoyant upwellings and that weaker (low buoyancy flux) hotspots such as Iceland and the Azores are characterized by lower excess temperatures than stronger hotspots such as Hawaii. This direct link between buoyancy flux and mantle temperature is evidence for the existence of mantle plumes.  相似文献   

20.
Modern basalts have seemingly lost all 'memory' of the primitive Earth's mantle except for an ambiguous isotopic signal observed in some rare gases. Although the Earth is expected to have reached a thermal steady state within several hundred million years of accretion, it is not known how and when the initial chemical fractionations left over from planetary accretion (and perhaps a stage involving a magma ocean) were overshadowed by fractionations imposed by modern-style geodynamics. Because of the lack of samples older than 4 Gyr, this early dynamic regime of the Earth is poorly understood. Here we compare published Hf-Nd isotope data on supracrustals from Isua, Greenland, with similar data on lunar rocks and the SNC (martian) meteorites, and show that, about 3.8 Gyr ago, the geochemical signature of the Archaean mantle was partly inherited from the initial differentiation of the Earth. The observed features seem to indicate that the planet at that time was still losing a substantial amount of primordial heat. The survival of remnants from an early layering in the modern deep mantle may account for some unexplained seismological, thermal and geochemical characteristics of the Earth as observed today.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号