首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.  相似文献   

2.
Cook RL  Martin PJ  Geremia JM 《Nature》2007,446(7137):774-777
Quantum mechanics hinders our ability to determine the state of a physical system in two ways: individual measurements provide only partial information about the observed system (because of Heisenberg uncertainty), and measurements are themselves invasive-meaning that little or no refinement is achieved by further observation of an already measured system. Theoretical methods have been developed to maximize the information gained from a quantum measurement while also minimizing disturbance, but laboratory implementation of optimal measurement procedures is often difficult. The standard class of operations considered in quantum information theory tends to rely on superposition-basis and entangled measurements, which require high-fidelity implementation to be effective in the laboratory. Here we demonstrate that real-time quantum feedback can be used in place of a delicate quantum superposition, often called a 'Schr?dinger cat state', to implement an optimal quantum measurement for discriminating between optical coherent states. Our procedure actively manipulates the target system during the measurement process, and uses quantum feedback to modify the statistics of an otherwise sub-optimal operator to emulate the optimal cat-state measurement. We verify a long-standing theoretical prediction and demonstrate feedback-mediated quantum measurement at its fundamental quantum limit over a non-trivial region of parameter space.  相似文献   

3.
Experimental one-way quantum computing   总被引:2,自引:0,他引:2  
Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.  相似文献   

4.
5.
运用单磁通量量子(SFQ)读取技术的超导单光子探测器(SSPD)可以实现低抖动信号的读出。通过优化SFQ读出电路的电路参数,输入电流灵敏度被改善到10μA以下,且该结果比SSPD典型的临界电流小。实验使用脉冲发生器作为输入脉冲源,结果显示测出的SFQ读出电路的抖动值远低于目前测量装置系统超过15μA的抖动电流值。SSPD连接到SFQ读出电路的测量抖动值在37 ps的半高全宽(FWHM)时的SSPD偏置电流约为18μA,这是对传统的没有SFQ读出电路,抖动为67 ps的FWHM的显著提高。  相似文献   

6.
The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.  相似文献   

7.
8.
A subdynamics theory framework for describing multi-coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formulated for constructing a pure coherent quantum computing system. This reveals that using multi-coupled systems to perform quantum computing in Rigged Liouville Space opens the door to controlling or eliminating the intrinsic de-coherence of quantum computing systems. Foundation item: Supported by the National Natural Science Foundation of China (79970121) Biography: Liu Gui-Ping (1964-), male, Lecturer. Research direction: quantum networks.  相似文献   

9.
Morton JJ  McCamey DR  Eriksson MA  Lyon SA 《Nature》2011,479(7373):345-353
Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer.  相似文献   

10.
Progressive field-state collapse and quantum non-demolition photon counting   总被引:1,自引:0,他引:1  
The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system's state. The evolution induced by measurement (known as 'state collapse') can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.  相似文献   

11.
We propose a concept of universal coherent source for quantum key distribution. The weak coherent pulse (WCP) and heralded single photon source (HSPS) are the most common photon sources for state-of-art quantum key distribution (QKD). However, there exists a prominent crossover between the maximal secure distance and the secure key generating rate in short and middle distance if one applies these two sources in a practical decoy state quantum key distribution. It is shown that by combining the heralded pair coherent state (HPCS) photon source and the practical decoy state method together, one can not only strengthen the maximal secure transmission distance, but also improve key generat- ing rate at short and medium distance. Moreover, the advancement in key generating is not confined in the particular protocol utilized and can be easily checked for both BB84 and SARG protocol. Finally, we clearly demonstrate how the HPCS-based decoy method works effectively and feasibly by proposing an efficient HPCS-based "1 signal+2 decoy" state method,  相似文献   

12.
Feedback loops are central to most classical control procedures. A controller compares the signal measured by a sensor (system output) with the target value or set-point. It then adjusts an actuator (system input) to stabilize the signal around the target value. Generalizing this scheme to stabilize a micro-system's quantum state relies on quantum feedback, which must overcome a fundamental difficulty: the sensor measurements cause a random back-action on the system. An optimal compromise uses weak measurements, providing partial information with minimal perturbation. The controller should include the effect of this perturbation in the computation of the actuator's operation, which brings the incrementally perturbed state closer to the target. Although some aspects of this scenario have been experimentally demonstrated for the control of quantum or classical micro-system variables, continuous feedback loop operations that permanently stabilize quantum systems around a target state have not yet been realized. Here we have implemented such a real-time stabilizing quantum feedback scheme following a method inspired by ref. 13. It prepares on demand photon number states (Fock states) of a microwave field in a superconducting cavity, and subsequently reverses the effects of decoherence-induced field quantum jumps. The sensor is a beam of atoms crossing the cavity, which repeatedly performs weak quantum non-demolition measurements of the photon number. The controller is implemented in a real-time computer commanding the actuator, which injects adjusted small classical fields into the cavity between measurements. The microwave field is a quantum oscillator usable as a quantum memory or as a quantum bus swapping information between atoms. Our experiment demonstrates that active control can generate non-classical states of this oscillator and combat their decoherence, and is a significant step towards the implementation of complex quantum information operations.  相似文献   

13.
14.
基于相位编码的高效量子密钥分配方案   总被引:2,自引:0,他引:2  
提出了一种新的单向量子密钥分配方案.该方案利用光子的两列子波之间相位差关系形成的干涉结果进行编码,并且利用与干涉结果独立的光子偏振态进行窃听检测.并对该方案的效率和安全性进行了分析.理论分析表明,该方案的光子利用率为100%,而经典通信量仅约为BB84方案的一半,信息传输效率约为2n/(3n+4),高于BB84方案25%的效率值,随着传输光子数n的增大,效率值将趋近于66.7%.而且,该方案对于截获重发、测量重发、纠缠测量等常见的攻击,都具有很好的安全性.此外,对于现在的技术而言,该方案较易实现.  相似文献   

15.
在两光子自由空间量子隐形传态实验方案中,设计了一套远程光符合的电子学系统,系统最小符合时间窗口约2ns.整个系统包括编码、解码、延时、高压驱动、符合、计数等模块.此系统实现了将实验中的经典信息和量子信息耦合在一起并通过自由空间传送到另一端进行在线符合来判定纠缠光子对.系统中编码模块将Alice端Bell基测量结果的时间标记信息和通道信息叠加在一起,通道信息的编码使用了奇偶校验和汉明码来降低事例丢失率和出错率,解码模块则分离出经典的时间标记信息和通道信息并做相应操作.完成了800m距离的两光子自由空间量子隐形传态实验,实验结果表明用本系统进行远程的实验是可行的.  相似文献   

16.
17.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   

18.
Shor proposed a quantum polynomial-time integer factorization algorithm to break the RSA public-key cryptosystem. In this paper, we propose a new quantum algorithm for breaking RSA by computing the order of the RSA ciphertext C. The new algorithm has the following properties: 1) recovering the RSA plaintext M from the ciphertext C without factoring n; 2) avoiding the even order of the element; 3) having higher success probability than Shor’s; 4) having the same complexity as Shor’s.  相似文献   

19.
A new multi-signature scheme was proposed with the extension of the direct anonymous attestation (DAA) protocol supported by trusted computing (TC) technology. Analysis and simulation results show that the signer’s privacy is well protected with dynamic anonymity, the public key and signatures have length independent of the number of signature members, new signers are allowed to join the signature without modifying the public key, and attacks caused by secret key dumping or leaking can be avoided. Biography: HAO Liming (1982–), male, Ph.D. candidate, research direction: trusted computing and trust management in P2P system.  相似文献   

20.
基于量子相干原理,分析了脉冲激光泵浦的第二类型自发参量下转换产生的同频率纠缠双光子态.研究了同频率纠缠双光子的量子相干性质,并与由脉冲激光所产生的不同频率纠缠双光子的量子相干性质做了对比.结果表明,随着激光脉冲宽度的增加,不同频率纠缠双光子态的相位匹配函数的不对称性增加,纠缠光子对的相干性减小,同频率纠缠双光子态的相位匹配函数仍保持对称,纠缠光子对的相干性达到最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号