共查询到20条相似文献,搜索用时 15 毫秒
1.
In the emerging field of quantum computation and quantum information, superconducting devices are promising candidates for the implementation of solid-state quantum bits (qubits). Single-qubit operations, direct coupling between two qubits and the realization of a quantum gate have been reported. However, complex manipulation of entangled states-such as the coupling of a two-level system to a quantum harmonic oscillator, as demonstrated in ion/atom-trap experiments and cavity quantum electrodynamics-has yet to be achieved for superconducting devices. Here we demonstrate entanglement between a superconducting flux qubit (a two-level system) and a superconducting quantum interference device (SQUID). The latter provides the measurement system for detecting the quantum states; it is also an effective inductance that, in parallel with an external shunt capacitance, acts as a harmonic oscillator. We achieve generation and control of the entangled state by performing microwave spectroscopy and detecting the resultant Rabi oscillations of the coupled system. 相似文献
2.
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics 总被引:1,自引:0,他引:1
Wallraff A Schuster DI Blais A Frunzio L Huang R Majer J Kumar S Girvin SM Schoelkopf RJ 《Nature》2004,431(7005):162-167
The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection. 相似文献
3.
We measured experimentally the spectrum of a superconducting phase qubit. An avoided energy-level crossing is obviously observed, which is due to the coupling to a microscopic two-level system. With different theoretical methods, we simulated the spectrum, from which we can obtain the coupled system's parameters and the coupling mechanism. 相似文献
4.
We measured experimentally the spectrum of a superconducting phase qubit. An avoided energy-level crossing is obviously observed, which is due to the coupling to a microscopic two-level system. With different theoretical methods, we simulated the spectrum, from which we can obtain the coupled system’s parameters and the coupling mechanism. 相似文献
5.
Simmons S Brown RM Riemann H Abrosimov NV Becker P Pohl HJ Thewalt ML Itoh KM Morton JJ 《Nature》2011,470(7332):69-72
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4?T), low-temperature (2.9?K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor. 相似文献
6.
Elzerman JM Hanson R Willems Van Beveren LH Witkamp B Vandersypen LM Kouwenhoven LP 《Nature》2004,430(6998):431-435
Spin is a fundamental property of all elementary particles. Classically it can be viewed as a tiny magnetic moment, but a measurement of an electron spin along the direction of an external magnetic field can have only two outcomes: parallel or anti-parallel to the field. This discreteness reflects the quantum mechanical nature of spin. Ensembles of many spins have found diverse applications ranging from magnetic resonance imaging to magneto-electronic devices, while individual spins are considered as carriers for quantum information. Read-out of single spin states has been achieved using optical techniques, and is within reach of magnetic resonance force microscopy. However, electrical read-out of single spins has so far remained elusive. Here we demonstrate electrical single-shot measurement of the state of an individual electron spin in a semiconductor quantum dot. We use spin-to-charge conversion of a single electron confined in the dot, and detect the single-electron charge using a quantum point contact; the spin measurement visibility is approximately 65%. Furthermore, we observe very long single-spin energy relaxation times (up to approximately 0.85 ms at a magnetic field of 8 T), which are encouraging for the use of electron spins as carriers of quantum information. 相似文献
7.
Maze JR Stanwix PL Hodges JS Hong S Taylor JM Cappellaro P Jiang L Dutt MV Togan E Zibrov AS Yacoby A Walsworth RL Lukin MD 《Nature》2008,455(7213):644-647
Detection of weak magnetic fields with nanoscale spatial resolution is an outstanding problem in the biological and physical sciences. For example, at a distance of 10 nm, the spin of a single electron produces a magnetic field of about 1 muT, and the corresponding field from a single proton is a few nanoteslas. A sensor able to detect such magnetic fields with nanometre spatial resolution would enable powerful applications, ranging from the detection of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules to readout of classical or quantum bits of information encoded in an electron or nuclear spin memory. Here we experimentally demonstrate an approach to such nanoscale magnetic sensing, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature. Using an ultra-pure diamond sample, we achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging. In addition, we demonstrate a sensitivity of 0.5 muT Hz(-1/2) for a diamond nanocrystal with a diameter of 30 nm. 相似文献
8.
Jingjing Niu Tongxing Yan Yuxuan Zhou Ziyu Tao Xiaole Li Weiyang Liu Libo Zhang Hao Jia Song Liu Zhongbo Yan Yuanzhen Chen Dapeng Yu 《科学通报(英文版)》2021,(12):1168-1175
Higher-order topological phases give rise to new bulk and boundary physics,as well as new classes of topological phase transitions.While the realization of high... 相似文献
9.
Topinka MA LeRoy BJ Westervelt RM Shaw SE Fleischmann R Heller EJ Maranowski KD Gossard AC 《Nature》2001,410(6825):183-186
Semiconductor nanostructures based on two-dimensional electron gases (2DEGs) could form the basis of future devices for sensing, information processing and quantum computation. Although electron transport in 2DEG nanostructures has been well studied, and many remarkable phenomena have already been discovered (for example, weak localization, quantum chaos, universal conductance fluctuations), fundamental aspects of the electron flow through these structures have so far not been clarified. However, it has recently become possible to image current directly through 2DEG devices using scanning probe microscope techniques. Here, we use such a technique to observe electron flow through a narrow constriction in a 2DEG-a quantum point contact. The images show that the electron flow from the point contact forms narrow, branching strands instead of smoothly spreading fans. Our theoretical study of this flow indicates that this branching of current flux is due to focusing of the electron paths by ripples in the background potential. The strands are decorated by interference fringes separated by half the Fermi wavelength, indicating the persistence of quantum mechanical phase coherence in the electron flow. These findings may have important implications for a better understanding of electron transport in 2DEGs and for the design of future nanostructure devices. 相似文献
10.
Control over quantum dynamics of open systems is one of the central challenges in quantum science and engineering. Coherent optical techniques, such as coherent population trapping involving dark resonances, are widely used to control quantum states of isolated atoms and ions. In conjunction with spontaneous emission, they allow for laser cooling of atomic motion, preparation and manipulation of atomic states, and rapid quantum optical measurements that are essential for applications in metrology. Here we show that these techniques can be applied to monitor and control individual atom-like impurities, and their local environment, in the solid state. Using all-optical manipulation of the electronic spin of an individual nitrogen-vacancy colour centre in diamond, we demonstrate optical cooling, real-time measurement and conditional preparation of its nuclear spin environment by post-selection. These methods offer potential applications ranging from all-optical nanomagnetometry to quantum feedback control of solid-state qubits, and may lead to new approaches for quantum information storage and processing. 相似文献
11.
12.
An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin that offer potential advantages in dissipation, size and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (- e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, +/- [planck]/2 (conventionally upward arrow, downward arrow), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but also that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions. 相似文献
13.
Koppens FH Buizert C Tielrooij KJ Vink IT Nowack KC Meunier T Kouwenhoven LP Vandersypen LM 《Nature》2006,442(7104):766-771
The ability to control the quantum state of a single electron spin in a quantum dot is at the heart of recent developments towards a scalable spin-based quantum computer. In combination with the recently demonstrated controlled exchange gate between two neighbouring spins, driven coherent single spin rotations would permit universal quantum operations. Here, we report the experimental realization of single electron spin rotations in a double quantum dot. First, we apply a continuous-wave oscillating magnetic field, generated on-chip, and observe electron spin resonance in spin-dependent transport measurements through the two dots. Next, we coherently control the quantum state of the electron spin by applying short bursts of the oscillating magnetic field and observe about eight oscillations of the spin state (so-called Rabi oscillations) during a microsecond burst. These results demonstrate the feasibility of operating single-electron spins in a quantum dot as quantum bits. 相似文献
14.
Nuclear magnetic resonance (NMR) is one of the experimental schemes for quantum computation. Most initial state of quantum
algorithm in NMR computation is the pseudopure state. Until now, there are several methods to prepare pseudopure state. This
note, based on the idea of controlled-not (CNOT) gates combination, has analyzed the characteristics of this method in the
odd- and even-qubit system. Also, we have designed the pulse sequence for a 4-qubit sample to obtain pseudopure state, and
realized it in the experiment. This method reduces the complexity of experiment and gives a high signal-to-noise (S/N) ratio. 相似文献
15.
Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor
The ability to manipulate and monitor a single-electron spin using electron spin resonance is a long-sought goal. Such control would be invaluable for nanoscopic spin electronics, quantum information processing using individual electron spin qubits and magnetic resonance imaging of single molecules. There have been several examples of magnetic resonance detection of a single-electron spin in solids. Spin resonance of a nitrogen-vacancy defect centre in diamond has been detected optically, and spin precession of a localized electron spin on a surface was detected using scanning tunnelling microscopy. Spins in semiconductors are particularly attractive for study because of their very long decoherence times. Here we demonstrate electrical sensing of the magnetic resonance spin-flips of a single electron paramagnetic spin centre, formed by a defect in the gate oxide of a standard silicon transistor. The spin orientation is converted to electric charge, which we measure as a change in the source/drain channel current. Our set-up may facilitate the direct study of the physics of spin decoherence, and has the practical advantage of being composed of test transistors in a conventional, commercial, silicon integrated circuit. It is well known from the rich literature of magnetic resonance studies that there sometimes exist structural paramagnetic defects near the Si/SiO2 interface. For a small transistor, there might be only one isolated trap state that is within a tunnelling distance of the channel, and that has a charging energy close to the Fermi level. 相似文献
16.
采用时间分辨圆偏振光抽运-探测光谱,研究本征GaAs中导带底附近电子初始自旋极化和自旋弛豫动力学.发现电子初始自旋极化度小于通常认为的0.5,并随光注入载流子浓度的增大而减小.假设右旋圆偏振光激发到导带的自旋取向,向上与向下电子浓度之比为13,理论计算的电子初始自旋极化度随载流子浓度变化关系与实验结果很好的符合.计算结果同时表明,带隙重整化效应对电子初始自旋极化度有较大影响,但电子初始自旋极化度小于0.5的现象并非起源于带隙重整化效应. 相似文献
17.
Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7?±?0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links. 相似文献
18.
考虑自旋极化依赖的带隙重整化效应,分别计算了常温与10 K的低温下GaAs导带中光注入电子自旋极化度的能量演化。计算过程中假设右旋圆偏振光激发,载流子浓度为2×1017 cm-3。发现常温下电子初始自旋极化度随过超能量的增大而增大,并非为通常认为的0.5。而在低温下,导带底附近电子初始自旋极化度几乎为0,电子初始自旋极化度也随过超能量的增大而增大,高能级上可以获得100%的电子初始自旋极化度。 相似文献
19.