首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以锦鲤为仿生对象,研究躯干和尾鳍的摆动推进特性。根据鱼体形态特征建立仿生鱼几何模型,并根据鱼体躯干和尾鳍的摆动姿态,分别建立不同的运动学模型,进而采用动网格技术并编写控制鱼体的UDF程序,对仿生鱼在被两种控制方程的驱动下的运动状态进行数值模拟,研究不同的运动频率、摆动幅度、来流速度对仿生鱼游动速度、加速度、位移及其压力分布的影响,揭示两种控制方程下仿生鱼摆动的推进性能特性。结果表明:在两种控制方程的驱动下,无论运动频率怎样变化,仿生鱼达到稳定状态时间相同,相同周期内游动距离相近;当摆动幅度为30°时,仿生鱼达到稳态时间最短,且波动相对较小,是最佳幅度;来流速度低于0.1时,可以在流场中稳定游动。且该模型在稳定游动状态下,高压低压分布在尾鳍两端,推动鱼体前进,与实际相符合。  相似文献   

2.
基于计算流体力学(CFD)方法建立了鱼体-流体耦合的三自由度(3-DoF)自主游动计算模型,对仿生金枪鱼模型从静止开始到稳定巡游的过程进行了模拟.计算结果表明:在巡游阶段前进速度的周期平均值非零,而侧向速度和艏摇角速度的周期平均值为零.鱼体前部始终产生阻力,鱼体后部在巡游阶段能够产生少量的推力,而尾鳍始终产生较大的推力.鱼体表面压力分布表明在尾鳍前缘的左右两侧,周期性地交替出现高压和低压区是尾鳍产生较大推力的原因.在加速阶段尾鳍的脱落涡强度大,一个周期脱落的两个涡相互挤压在一起;在巡游阶段鱼体产生的涡和尾鳍产生的涡融合在一起脱落到尾流中,形成反卡门涡街,使得尾鳍有效地吸收鱼体产生的涡中的能量,减少功率消耗.  相似文献   

3.
针对射流表面流场特性,运用可拓学基本原理,建立主流场速度与射流速度耦元、耦合方式的可拓模型.利用RNG k-ε湍流模型对射流表面主流场速度与射流速度耦合情况下减阻特性进行数值模拟,研究射流表面减小黏性阻力和压差阻力的原因及对射流孔附近壁面流域边界层控制行为.研究结果表明:主流场速度越小与射流速度越大耦合情况下射流表面减阻效果最好,节能效果明显;主流场速度与射流速度耦合对边界层的控制行为表现在射流表面模型使射流孔下游流域黏性底层厚度减小,边界层厚度降低,导致壁面所受黏性阻力减小;同时形成的反向漩涡在壁面形成的反向流对仿生射流表面产生逆流向的推动作用,对压差阻力产生抑制效应.  相似文献   

4.
射流表面射流角度与射流速度耦合减阻特性   总被引:1,自引:0,他引:1  
针对射流的仿生非光滑表面的减阻问题,运用可拓学基本原理建立了射流角度与射流速度耦元、耦合的可拓模型.利用SSTk-w湍流模型在对射流表面射流角度与射流速度耦合情况下的减阻特性进行了数值模拟,并以此研究了射流表面压差阻力和黏性阻力减小的原因和射流表面边界层的控制行为.结果表明:在射流的角度、速度耦合的情况下,射流表面的减阻性能较好;当耦合的射流角度为30°、射流速度为1.2 m/s时,减阻率最大,为28.10%;角度、速度耦合下的射流表面有助于减小模型壁面的速度梯度,增加壁面黏性底层的厚度,继而降低了模型壁面的压差阻力和黏性阻力,并且表现出良好的减阻性能;耦合下的压差阻力在一定程度上可以作为一种附加的动力,对射流表面流体起到推动的作用.  相似文献   

5.
调距桨锁轴拖带工况最小拖桨阻力和水动力矩   总被引:3,自引:0,他引:3  
采用计算流体力学方法,对某典型5叶调距桨锁轴工况拖桨阻力以及相应的水动力矩随螺距和进流速度的变化特性进行了数值计算,分析了这些特性的流体力学机理. 数值计算基于有限体积法,通过数值求解螺旋桨周围三维黏性不可压缩流场RANS方程来模拟螺旋桨在各种工况下的流动特性. 计算结果表明:来流速度相等时该调距桨在最大正车螺距时拖桨阻力最大,其幅值约占同航速下船体阻力的80%,水动力矩也最大;在最大倒车螺距时拖桨阻力最小,其幅值约占同航速下船体阻力的50%,水动力矩比最大正车螺距时显著减小;零螺距时拖桨阻力大小居中,而水动力矩最小,接近为零. 上述结论可为船舶动力装置部分桨工况时联控曲线的设计和锁轴机构的设计提供理论参考.  相似文献   

6.
基于FLOW-3D软件平台建立三维水动力计算模型,研究水轮机横向间距、相对安装高度和来流速度对二台并排布置的水平轴潮流能水轮机组的水动力特性的影响。结果表明:随着横向间距的增大,水轮机组受到的与来流方向相同的最大水流作用力有一定减小,最大降幅达6.62%,尾流场中水流加速区域的最大流速也略有减小,最大降幅约1.21%;水轮机组相对安装高度和来流速度的改变,对其飞逸转速、最大水流作用力以及尾流场有显著影响。  相似文献   

7.
为减小平板型空滤器流动阻力以增大进气量,对平板型空滤器流动阻力特性开展了实验研究,获得了空滤器流动阻力随流量变化的规律和阻力构成成分。阻力随流量的增大而加速增大,滤芯阻力约占整个空滤器阻力的一半,入口流量为120m3/h时,总阻力为915.3Pa,滤芯阻力为426.4Pa。在实验获得滤芯阻力参数的基础上,提出采用多孔介质跃升模型对平板型空滤器内部流场开展三维数值仿真分析,结果表明,仿真结果与实验结果比较吻合,最大误差为5.67%。滤芯阻力同样约占整个阻力的一半,另一半阻力主要为出口处阻力,其余壁面阻力约占15%。最后,在实验和仿真分析的基础上,提出了改进模型并进行了仿真分析。结果表明,改进模型阻力有较大程度的下降,入口流量为120m3/h时,总阻力为588.2Pa,较原始模型下降了32.2%;增大空滤器流通横截面积是减小阻力以增大进气量的有效手段,改进空滤器壁面的平滑性是补充措施。  相似文献   

8.
合理的风洞高速列车实验模型对其气动评估和研究十分重要。采用计算流体力学方法,以开口式风洞和高速列车头车为对象,研究风洞实验头车最短尾部模型和合理缩比模型的选取方法。结果表明:无侧风时头车阻力系数随着尾部模型缩短而增加,尾部负压前移使得车厢连接处压力降低,头车+0.4L尾部模型的头车阻力与3车编组头车偏差为2.8%,可作为头车气动最短实验模型。头车最大缩比模型选取受风洞边界效应、雷诺数效应和地面效应共同影响,其中雷诺数效应使得摩擦阻力减小,地面效应使压差阻力增大,1:8、1:4缩比模型与1:1模型头车的压差阻力偏差为12.7%和7.2%,压差阻力分别占头车总阻力63.9%、67.2%和72.5%。结果表明,对于开口式风洞选取1:4的头车气动实验模型更为合理。  相似文献   

9.
螺旋折流板换热器壳侧流动的数值模拟   总被引:13,自引:1,他引:13  
采用多孔介质、分布阻力模型、阶梯逼近技术对螺旋折流板换热器壳侧的流动进行了三维数值模拟,湍流方程组的求解采用了改进的k-ε模型和壁面函数法.数值模拟结果表明,在相同的进口内径及相同的进口流量条件下,螺旋折流板换热器壳侧的压降明显低于弓形折流板换热器的,且随着螺旋角的增加,压降呈减小的趋势.在小流量条件下,计算所得的换热器进出口总压降与实验值之间的偏差大部分在14%以下,最大为18%,能符合工程计算的需要.  相似文献   

10.
利用Maxwell方程组直接数值计算表面包覆电极与磁极圆柱体产生的电磁力分布,将其加入到动量方程中,采用脱体涡模拟(DES)方法,在雷诺数Re=3 900时,对电磁力作用下圆柱体在弱电解质中的绕流场结构及其升阻力特性进行了数值模拟与分析.结果表明,电磁力作用可提高圆柱体边界层内的流体动能,抑制流动分离的产生,减弱圆柱绕流场的三维特性,在电磁力作用参数达到某个临界值后,在圆柱体后方产生射流现象;同时,随着电磁力作用参数的增大,圆柱体压差阻力及其总阻力减小,但摩擦阻力增大,而且电磁力的作用还可以显著减小升力脉动幅值.  相似文献   

11.
采用Micro-PIV实验系统和压差测试系统,研究了含有单个微圆柱的通道内去离子水在10相似文献   

12.
以某一挂载侧扫声呐的小型便携式自主水下机器人(AUV)为原型,对挂载侧扫声呐的AUV及挂载改进流线型侧扫声呐的AUV进行水动力分析。发现改进流线型侧扫声呐的AUV在正常航速3 kn和高航速6 kn下,得到了有效的阻力改善,包括黏性阻力和压差阻力的降低。在航速3 kn时,黏性阻力降低了9%,压差阻力降低了18%,总阻力降低了15.4%;在航速6 kn时,黏性阻力降低了4.2%,压差阻力降低了12%,总阻力降低了10.1%。这些结果表明,通过优化AUV挂载侧扫声呐的流线型,可以有效地提高AUV的动力性能,降低其阻力,从而提高AUV的性能和效率。  相似文献   

13.
等离子体气动激励能够显著提升飞行器/动力装置的气动性能。本文进行了等离子体气动激励减小RAE2822翼型跨音速阻力的数值模拟。将电弧放电等离子体激励简化为对流场的热能注入,建立了基于唯象学的数值计算模型,以实验测试结果作为输入条件,将热能以源项的形式加入N-S方程求解,研究了不同来流速度、激励强度以及激励位置下等离子体气动激励对翼型阻力特性的影响。仿真结果表明:等离子体气动激励可以有效减小RAE2822翼型跨音速阻力,来流速度与等离子体气动激励减阻效果有较大关系,当[WTBX]Ma=0.81时,减阻达到13.58%;激励强度对减阻效果影响较小,当W[WTBZ]=3 000 K时,减阻达到11.77%;增大激励位置,减阻效果增大,但幅度变小,当[WTBX]D[WTBZ]=20 mm时,减阻达到13.17%。  相似文献   

14.
通过风洞实验研究三维柱体顶部前沿狭缝脉冲吸气对其气动力与尾流的控制效果。实验模型为高宽比H/d=5的方柱,均匀来流速度U=10 m/s,雷诺数Re=27 000,狭缝入口吸气速度与来流风速相同。研究结果表明:相对于无控制工况,脉冲吸气对柱体气动力有明显抑制作用;当脉冲吸气系数f*=0.2时,脉冲吸气与定常吸气对柱体气动力的抑制效果相当;随f*增大,柱体阻力与脉动升力仍有所减小,但减小幅度有限;顶部脉冲吸气不仅能明显削弱柱体顶部附近气动力,而且对柱体中下部气动力抑制效果比定常吸气对柱体气动力抑制效果好;顶部脉冲吸气在自由端剪切流中形成周期性大尺度涡结构,增强了自由流与尾流动量交换。  相似文献   

15.
推进效率是水下潜器装备运行的核心问题,对机器装备的现实应用具有至关重要的影响.针对仿鲔科鱼类研制的机器鱼,根据鲔科鱼类波状运动特征,将机器鱼体离散为由鱼体、尾鳍、胸鳍等部分组成的多刚体系统,结合鱼体所受外力载荷,运用牛顿欧拉法建立了机器鱼动力学模型.基于该动力学模型,开展了以提高机器鱼的推进效率为目标的鱼体运动参数优化设计,以机器鱼的巡游效率为目标、以鱼体各机体的运动参数为优化设计变量、选用遗传算法为优化算法,进行参数匹配优化;通过优化实现了机器鱼尾鳍、鱼体及胸鳍的多机体协同,提高了机器鱼的推进效率.针对优化匹配设计结果,进一步开展了机器鱼的运动学数值模拟仿真,结果表明机器鱼的巡游速度在数值上为鱼体长度的1. 415倍时,机器鱼的推进效率最高,其值达到最大值49. 9%.  相似文献   

16.
为了解决传统R eyno lds方程无法求解盘片表面形貌突变处压力分布的问题,采用N-S方程和有限体积法对磁盘磁头间隙润滑进行数值分析。使用形貌突起高度、密度和占空比3个参数描述盘片表面的规则矩形横向形貌,并通过分析流场压力和速度的分布,解释了不同形貌参数对润滑阻力的影响。结果显示,由于矩形形貌的影响,形成了压差阻力,压差阻力随形貌突起高度或密度的增加而增大,随突起占空比的增加而减小。摩擦阻力的大小取决于近壁面流场的速度梯度,而形貌参数是该速度梯度的决定因素之一。压差阻力和摩擦阻力的综合作用决定了盘片表面的总阻力。  相似文献   

17.
采用Micro-PIV实验系统和压差测试系统,研究了含有单个微圆柱的通道内去离子水在10相似文献   

18.
搭建了变流量空调系统实验台,对一次泵变流量空调系统在定干管压差控制策略下部分负荷工况的运行特性进行了实验。结果表明:随着负荷率的降低,冷水机组COP先升高后降低,且在60%负荷率时COP最高;水泵综合效率始终降低;冷水机组输入功率与水泵输入功率呈现出不同的变化趋势——水泵输入功率始终降低,而冷水机组输入功率先降低后升高,导致27.2%负荷率下冷水机组和水泵的总输入功率高于45.1%负荷率下的总输入功率;水泵的变频运行不满足相似定律,推导出水泵输入功率与流量的关系方程,得出其输入功率与定压差阻力和机房侧阻力所占比重以及水泵综合效率有关,实验中水泵的输入功率近似与流量的二次幂成正比。  相似文献   

19.
基于计算流体力学(CFD)方法,建立了鱼体-流体耦合的三自由度(3-DoF)自由游动的计算模型,对仿生金枪鱼模型的C-型快速启动进行了模拟.鱼体由静止开始,经过C-型快速启动之后,进入滑行阶段.对整个过程中鱼体的游动性能、水动力性能、流场速度矢量分布和三维涡结构进行分析.结果表明:在阶段1,鱼体后部快速地弯曲成C-型,首摇角速度ωz快速向负向(顺时针方向)增加至峰值之后缓慢减小,导致鱼体快速转向;在阶段2,鱼体后部快速地弹出C-型,首摇角速度ωz快速向正向(逆时针方向)增加至峰值之后迅速减小,同时纵向速度(Ux)快速向前进方向增加至幅值之后保持不变;在滑行阶段,鱼体以C-型启动获得的Ux向前滑行;在整个C-型启动阶段共有两个涡环产生,每个涡环产生一个射流,在阶段1产生的射流使得鱼体快速转向,在阶段2产生的射流使得鱼体快速向前滑行.  相似文献   

20.
为改善列车底部流场结构,进一步减低高速列车的气动阻力,基于底部导流的思想,设计了一种列车底部转向架舱前后位置布置、截面为三角形的导流板并开展其气动减阻特性研究.以300 km/h的速度明线运行的三车编组CRH380B型高速列车为研究对象,采用Realizable k-ε湍流模型,对4种典型的导流板安装位置进行探讨,并选择减阻效果最好的导流板安装位置,分别探究了5种角度和5种高度的不同组合下的导流板减阻特性差异,对比了安装导流板前后车体、转向架以及转向架舱上的阻力变化情况、压力分布变化情况以及转向架区域的流场结构变化情况.结果表明:仅在各转向架舱前双向开行的来流方向安装导流板时的减阻效果最佳;安装导流板后,车体、转向架舱上的气动阻力虽有所增加,但转向架上的阻力明显减少,转向架区域流速降低,前后压差减小,底部流场显著改善.同时发现,15°、100 mm组合的导流板减阻效果最佳,三车减阻率达7.08%.数值仿真证明了底部导流板能有效减小列车运行阻力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号