首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
土壤呼吸受众多生物与非生物因素综合调控,区别研究经果林与生态林土壤呼吸的主要影响因子对于了解CO2排放对环境和植物生长的影响十分重要.2014年7月至2015年6月,以重庆市缙云山马尾松林和柑橘林土壤为研究对象,探讨不同森林类型的土壤呼吸、土壤微生物、土壤酶及土壤温湿度特征及其相关关系.研究表明:1)观测期内,柑橘林土壤呼吸速率明显高于马尾松林;2)两种林分土壤呼吸速率有明显的季节变化,从高到低顺序为:夏季、春季、秋季、冬季;3)土壤呼吸速率与土壤湿度、细菌数、放线菌数、总PLFA数及脲酶质量分数成正相关,与真菌数成负相关.综合分析表明,土壤呼吸受土壤温湿度、土壤微生物及土壤酶等因素共同作用,其中土壤湿度是土壤呼吸季节变化的主控因子.  相似文献   

2.
本研究以桂林尧山的4年生桉树幼龄林、20年生桉树老龄林和22年生马尾松林为研究对象,于冬季(2012年12月至2013年2月)分别对这3种林分的土壤呼吸及其组分、土壤温度、土壤湿度进行3个月的观测,结果表明:①4年生桉树幼龄林的土壤呼吸速率与20年生桉树老龄林差异不显著,但显著大于22年生马尾松林,20年生桉树老龄林与22年生马尾松林也无显著差异。总体来看,3种林分的土壤呼吸都处在较低水平。②3种林分异养呼吸速率差异不显著,自养呼吸速率差异显著,其大小顺序为:4年生桉树幼龄林20年生桉树老龄林22年生马尾松林。4年生桉树幼龄林的自养呼吸贡献率明显大于20年生桉树老龄林和22年生马尾松林。③相关性分析表明,土壤温度是影响土壤呼吸及其组分的主要环境因子,温度与土壤呼吸呈显著的指数关系,土壤含水量对土壤呼吸的影响不显著。④对温度敏感性系数Q10值的分析表明,3种林分中20年生桉树老龄林的温度敏感性最大,4年生桉树幼龄林对温度敏感性最小。  相似文献   

3.
杉木林与楠木林土壤呼吸昼夜变化及与土温变化的关系   总被引:3,自引:0,他引:3  
采用Li-8100于2006年7月、2007年2和4月分别测定21 a生杉木林和35 a生楠木林土壤呼吸的昼夜变化,结果表明,两个林分的土壤呼吸速率昼夜变化表现为单峰型,日最高值基本都出现在中午13:00左右,最低值大部分时间出现在5:00左右,均值则出现在9:00~11:00.指数回归分析表明,除楠木林2月外,两个林分其他各月土壤呼吸速率与土壤温度呈显著的正相关(P<0.05),5 cm土温解释了杉木林土壤呼吸速率变化的51%~70%,而5 cm土温仅解释了楠木林土壤呼吸速率变化的32%~53%.杉木林土壤呼吸的Q10值大小顺序为Q10(4月)>Q10(2月)>Q10(7月),楠木林土壤呼吸的Q10值大小顺序为Q10(4月)>Q10(2月)>Q10(7月).  相似文献   

4.
2013年7-10月通过对敦煌市南湖乡境内的葡萄种植区有根、无根区域土壤呼吸进行系统观测,分析该地土壤呼吸的时空变化特征及其与温湿度之间的关系.结果表明:葡萄在生长季的各时期土壤呼吸速率的日变化基本为不对称的双峰型曲线,有根区土壤呼吸速率大于无根区的,且二者日变化差异明显,可估算出根呼吸占土壤总呼吸的比例.在日尺度上,0 cm土壤温度与土壤呼吸速率相关性较好,而5 cm土壤温度峰值与土壤呼吸速率峰值之间有位相差,在无根区二者滞后约3 h,有根区滞后时间较小.扩散系数和光合有效辐射显著影响土壤呼吸速率,是迟滞发生的主要原因.土壤温湿度对有根、无根区土壤呼吸的影响有差异.估算葡萄农田土壤呼吸需考虑其距离树干的空间差异性和迟滞现象的影响。  相似文献   

5.
土壤呼吸是生态系统碳循环的重要组成部分,本研究针对内蒙古典型草原退化与恢复群落,测定了其在生长季和非生长季的土壤呼吸日动态变化.研究表明:退化群落平均土壤呼吸约是恢复群落的50%;非生长季CO2的排放速率最高约为生长季的10%.恢复群落土壤呼吸速率与温度呈显著正相关,与土表温度的相关性最高;退化群落的相似特征仅在非生长季出现.过度放牧导致的植被退化是土壤呼吸速率降低的原因.植被退化改变了群落土壤呼吸对环境变化的响应模式,影响非生长季土壤呼吸的因素及其权重与生长季相比发生明显变化.本研究对于了解土地利用变化对于碳释放的影响具有一定的科学意义,对天然草地可持续管理也有积极的意义.  相似文献   

6.
利用Licor-6400-09土壤呼吸测定系统对南京林业大学树木园内3种人工林(马褂木林、栓皮栎+雪松+刺槐混交林、柳杉林)土壤呼吸速率的季节变化及其影响因子进行分析。结果表明:(1)3种人工林的土壤呼吸速率具有明显的季节变化,夏季(7月)较高,马褂木林、栓皮栎+雪松+刺槐混交林和柳杉林的土壤呼吸速率最高值分别为474、409和414 μmol/(m2·s);冬季(12月)最低,分别为148、121和085 μmol/(m2·s);(2)3种人工林的年均土壤呼吸速率有显著差异(p<005),年均土壤呼吸速率大小排序为马褂木林、栓皮栎+雪松+刺槐混交林、柳杉林;(3)3种人工林的土壤呼吸速率与土壤温度呈显著性指数相关,与土壤含水率呈显著线性相关;(4)3种人工林的Q10值存在一定程度的差异,柳杉林的Q10值大于栓皮栎+雪松+刺槐混交林和马褂木林的Q10值。  相似文献   

7.
以茂兰自然保护区喀斯特植被两种主要演替群落(喀斯特原生乔木林和次生林)为研究对象,采用LI-6400-09便携式土壤呼吸室对其土壤呼吸速率进行了连续定位观测.结果表明:(1)喀斯特乔木林和次生林的土壤呼吸速率、土壤温度和林内气温的日变化因演替群落和月份的不同而存在差异;(2)两种演替群落的土壤呼吸速率具有明显的季节变化特征,表现为夏季>秋季>春季>冬季;喀斯特乔木林的月平均土壤呼吸速率在0.39 ~ 4.65 μmol/(m2·s)之间,变异幅度达11.92,次生林的月平均土壤呼吸速率在0.93 ~4.56 μmol/(m2 ·s)之间,变异幅度为4.90;(3)两种演替群落土壤呼吸速率的季节变化与林内气温和不同层次土壤温度均呈显著性正相关;(4)喀斯特乔木林土壤呼吸的Q10值在3.82 ~ 4.07之间,次生林的Q10值在2.52 ~2.61之间,喀斯特乔木林土壤呼吸对温度的敏感性指数要大于次生林,且土壤呼吸的Q10值随着土壤深度的增加而增加.  相似文献   

8.
以长株潭亚热带红壤地区为研究区,采用碱液(NaOH)吸收法对植物非生长季节(2011年12月-2012年5月)水田、旱地、马尾松林地和草地4种土地利用类型的土壤呼吸速率进行了测定,并结合水热等因子,对不同土地利用类型土壤呼吸速率的时间差异进行了因果分析.研究结果表明:4种土地利用类型土壤呼吸速率日变化呈单峰曲线,与气温变化趋势一致,水田和旱地土壤呼吸速率在中午最高,马尾松林地和草地土壤呼吸速率在晚上最高;在季节变化中,12月至5月份土壤呼吸速率总体呈上升趋势,但马尾松林地土壤呼吸速率1月份低于12月份、4月份低于3月份,草地则2月份低于1月份、4月份低于3月份;4种土地利用类型的平均土壤呼吸速率由大到小依次为:草地、马尾松林地、水田和旱地;土壤呼吸率主要与气温、土壤温度、湿度、植被生长特性、生物和人类活动等相关.  相似文献   

9.
张晶 《甘肃科技》2020,(14):26-30
近几年全球气候变暖已经成为人类共同面对的问题,土壤释放的CO2又是大气CO2的重要组成部分,因此研究土壤呼吸是十分必要且紧迫的。本研究采用LI-8100自动土壤碳通量测量系统,在黑河流域的张掖灌区选择一块辣椒地进行土壤呼吸测定,选取土壤呼吸最强的七月、八月、九月的实验数据,利用SPSS进行相关性分析,并分析土壤呼吸的日变化与季节变化规律及温度、湿度对土壤呼吸速率的影响。研究发现,辣椒地的土壤呼吸状况呈现出不同的日变化以及季节变化规律,在不受其他环境因素的影响下,12点到15点为每日的最大日动态土壤呼吸时间,并且与最高土壤温度同步。温度与土壤呼吸速率成指数关系,湿度与土壤呼吸速率呈线性关系,并计算分析了土壤呼吸速率测定的最佳时间。  相似文献   

10.
阔叶红松(Pinus koraiensis)林是我国东北东部山区的地带性顶极植被,全球氮沉降增加可能影响其碳循环的各个过程。在2010年和2011年的5—10月,对典型阔叶红松林进行了模拟氮沉降实验。实验设置了对照(N0, 0 kg/(hm2·a))、低氮(N1, 30 kg/(hm2·a))、中氮(N2, 60 kg/(hm2·a))和高氮(N3, 120 kg/(hm2·a))4种模拟氮沉降处理,每隔半个月采用Li-6400-09便携式CO2/H2O气体分析仪对土壤呼吸速率进行测定,研究了氮沉降对典型阔叶红松林土壤呼吸的影响。结果表明:① 各处理土壤呼吸速率的季节变化与5 cm深度的土壤温度相似,均呈现出明显的季节变化趋势,最大值出现在6月中旬(3.84~4.55 μmol/(m2·s)),最小值出现在5月初(1.37~1.84 μmol/(m2·s)),土壤温度的变化可解释土壤呼吸速率季节变化的49.9%~69.2%。② 各处理的土壤呼吸速率与土壤温度呈指数相关(R2=0.499~0.692),土壤呼吸速率与土壤温度、湿度及其相互作用的回归模型可以解释各处理土壤呼吸速率52.2%~73.5%的季节变异; ③ N0、N1、N2和N3样地土壤呼吸温度敏感系数Q10值分别为2.10、1.93、1.97和2.01; ④ 各处理样地土壤呼吸速率的平均值分别为3.09、2.78、3.06和2.90 μmol/(m2·s),与对照样地N0相比,土壤呼吸速率和凋落物量无明显相关(P> 0.05)。  相似文献   

11.
热带雨林土壤呼吸测定代表性时段研究   总被引:2,自引:0,他引:2  
选取适当时段测定土壤呼吸以代表日平均值,可使短期土壤呼吸观测数据有效应用于土壤呼吸年总量的估算。笔者在西双版纳热带季节雨林使用土壤呼吸自动观测系统在不同月份(1月、4月、7月和10月)进行土壤呼吸连续日变化观测,评估了土壤呼吸代表性时段的有效性。结果表明:在4月、7月和10月使用9:00—11:00作为土壤呼吸代表性时段,与24 h日平均土壤呼吸值相对差异可控制在10 %以内;不同月份9:00—11:00土壤呼吸平均值均与24 h日平均值存在偏差,10月相对差异最小,7月最大;选择9:00—11:00时段在多日尺度上可以代表日平均土壤呼吸值,所测算出的Q10值相对接近。  相似文献   

12.
一天一次的土壤呼吸测定方式可能会引起结果的偏差, 为了估计这种偏差以及确定土壤呼吸测定的最适宜时间, 2011年6?8月在河北省塞罕坝地区开展4种植被类型(森林、灌丛、草原和草甸)、13个群落类型土壤呼吸速率日动态以及土壤表层10 cm温度和气温的同步测定。结果表明: 在一天内不同时间进行测定, 可导致土壤呼吸速率偏离程度在-26%~68%; 森林在一天内不同时间进行测定, 对土壤呼吸速率的影响较小(距离日平均值的偏离<10%); 草原和草甸通常在早上7:30-10:30和下午17:00-19:00进行测定对土壤呼吸速率的影响较小(距离日平均值的偏离<10%)。土壤呼吸速率的日变化与土壤温度和气温的日变化密切相关。研究表明, 如果忽略土壤呼吸的日动态, 将会对土壤呼吸速率的估算带来显著影响。  相似文献   

13.
采用LI-8100全自动土壤CO2通量测定系统于2010年7月和10月及2011年1月和4月分别对九龙江口秋茄(Kandelia candel)红树林湿地土壤呼吸的昼夜变化进行测定.结果表明,10月和4月的土壤呼吸速率昼夜变化表现为单峰型,日最高值出现在14:00,最低值出现在00:00;而7月和1月的昼夜变化则显示出不同的趋势,最大值分别出现在10:00和08:00而最低值分别出现在22:00和04:00,样地土壤呼吸速率的日均值出现在06:00——10:00.指数回归分析显示,秋茄红树林湿地土壤呼吸速率变化与土壤温度呈极显著的正相关(p<0.01),5 cm层土壤的温度变化可以解释秋茄红树林湿地土壤呼吸速率变化的74.4%.  相似文献   

14.
根据远红外气体分析原理,采用Li-6400-09土壤呼吸室和Li-6400光合速率测定仪对川西北高寒草甸土壤呼吸速率日变化进行测定,并同步记录大气温度、0、5、10、15和20 cm地温,探讨温度对土壤呼吸速率的影响.结果表明,在选取的浅丘山地灌丛(US)、浅丘山地草甸(UM)、丘前阶地草甸(TM)3块样地中,土壤呼吸速率日变化均呈单峰型,日均呼吸速率是UM((5.34±0.339)μmol.m-2.s-1)>US((5.14±0.225)μmol.m-2.s-1)>TM((4.49±0.282)μmol.m-2.s-1),差异极显著(P<0.01).大气温度、0和5 cm地温与3块样地土壤呼吸速率相关性最强,以5 cm地温最突出;10 cm地温与呼吸速率相关性较好;15和20 cm地温与呼吸速率相关性很小.基于Q10值,土壤呼吸速率对5 cm地温的变化最敏感,各样地对温度的响应是UM>US>TM.  相似文献   

15.
采用切断根系法,运用Li-6400光合呼吸测定仪对肖坑亚热带常绿阔叶林根系呼吸特性及其对土壤呼吸的贡献和季节动态变化进行了研究,并探讨了根系呼吸对土壤温度和含水量的响应。结果表明,中龄林根系呼吸速率年变化范围为0.412~1.970μmol/(M^2·s),幼龄林为0.259—1.414μmol/(m^2·s);幼龄林年平均根系呼吸速率(1.198μmolf(M^2·s))是中龄林的(0.937μmol/(m^2·s))1.13倍。中龄林和幼龄林根系呼吸速率及根系呼吸占土壤总呼吸的比例季节变化规律基本一致,1年中基本呈单峰曲线模式,高峰值出现在6月,之后逐渐下降至次年1月达最低值。幼龄林根系呼吸占土壤总呼吸的比例为31.79%~59.00%;而中龄林根系呼吸所占比例范围(23.50%-50.26%)较幼龄林小。中龄林和幼龄林根系呼吸速率与土壤5cm内温度相关性显著。中龄林根系呼吸对土壤温度的敏感程度大于幼龄林。在温度较低的情况下,土壤高含水量并没有促进根系的呼吸,但与土壤温度互作可能对林木根系呼吸产生较为显著的促进效果,这方面还需进一步研究。  相似文献   

16.
紫色土丘陵区典型林地土壤温室气体释放研究   总被引:1,自引:0,他引:1  
采用动态-密闭气室法(LI-6400-09)对紫色土丘陵区三种典型林地土壤温室气体释放进行连续测定.结果表明,温度是影响土壤呼吸的关键因子,各林地土壤呼吸速率与土壤温度呈正相关,都随温度呈指数增长.在温度较低的冬春季,土壤湿度对土壤呼吸的影响不明显,温度较高的夏季土壤湿度与林地(桤树,柏树)土壤呼吸速率呈显著性抛物线相关(p<0.05);三种林地中,针叶林柏树林地土壤呼吸与土壤湿度相关性最好,当土壤含水量<25%时,随着湿度的增加,土壤呼吸速率逐渐增大,之后随着湿度的增大,土壤呼吸速率逐渐减小.各季节的日变化规律表现不一致,冬春两季各林地土壤呼吸都和土壤温度的日变化趋势保持一致,表现为先升后减的趋势;夏秋两季,因为较高的土壤温度和表层土壤相对湿度的剧烈波动,各林地土壤呼吸日变化呈现不规则波动.  相似文献   

17.
对河北塞罕坝机械林场樟子松(Pinus sylvestris var.mongolica)人工林采取不同的处理方式(对照(CK)、凋落物移除(-L)、凋落物添加(+L)、根系去除(-R)、凋落物和根系同时去除(-R-L)、凋落物添加和根系去除(-R+L)),基于处理后第一个生长季(2019年5—9月)的测定结果,研究不...  相似文献   

18.
利用Li-840 CO2气体分析仪,测定并分析了哀牢山中山湿性阔叶林和具有30 a历史的茶园的土壤呼吸季节变化特征。结果发现:在干季,土壤呼吸速率表现为茶园显著大于阔叶林,而在湿季,茶园略小于阔叶林,从全年结果看茶园略大于阔叶林;茶园的土壤温度和土壤含水量均显著大于阔叶林;通过土壤温度和土壤水分的双因子模型,得到土壤温度和土壤水分对茶园和阔叶林的土壤呼吸变化解释率分别为49.6%和70.7%;土壤呼吸的温度敏感性表现为茶园小于阔叶林;茶园土壤有机质碳、氮量显著小于阔叶林,而在土壤质量密度、pH、磷和钾含量方面,则茶园显著大于阔叶林。  相似文献   

19.
Climate change can significantly affect carbon cycling of forest ecosystems.The diurnal and seasonal dynamics of soil respiration (Rs) in Cinnamomum camphora and Liquidambar formosana forests were investigated by using infrared gas exchange analyzer of Li-Cor 6400-09 each month in 2006.Soil temperature and moisture were also measured.Diurnal variations in Rs varied with daily soil temperature in the two forests.Across the growing season,soil respiration peaked on July 28 due to higher soil temperature and m...  相似文献   

20.
农牧交错带地区土地利用方式多变,人为的改变土地利用方式会影响土壤释放CO2的速率.分别对新开垦农田、多年耕种农田、退耕还草草地、多年生草地4种利用类型的土壤温度、土壤有机碳含量、土壤呼吸速率进行监测和研究,结果表明:4种土地利用类型土壤呼吸速率的日变化图像呈单峰性曲线,其中草地平均呼吸速率最大,为0.85g·m-2·d-1.4种土地利用类型土壤温度与土壤呼吸速率呈正相关关系,其中新开垦农田变化明显,K值最高,达到0.045.从整个生长季来看,4种土地利用类型平均呼吸速率表现为新开农田>草地>还草草地>农田,分别为0.97g·m-2·d-1、0.85g·m-2·d-1、0.77g·m-2·d-1和0.56g·m-2·d-1.0-10cm和10-20cm土层土壤有机碳含量大小关系与土壤呼吸速率基本吻合.试验表明不论对草地进行开垦还是对农田进行退耕还草都会增加土壤CO2的释放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号