共查询到20条相似文献,搜索用时 0 毫秒
1.
利用最近提出的(G′/G)-展开法, 获得了Ginzburg-Landau方程更多的显式行波解, 分别以含两个任意参数的双曲函数、三角函数及有理函数表示,当参数取特殊值时,可得到以往文献中相关结果. 相似文献
2.
《聊城大学学报(自然科学版)》2016,(4)
运用行波变换、齐次平衡原理和G′/G展开法研究广义五阶色散方程,讨论推广的五阶色散方程的解的存在性及其求解过程,得到推广的五阶色散方程所有可能情形下的G′/G解. 相似文献
3.
对(G′/G)展开法进行了简化,并将简化后的方法应用于描述神经纤维中神经冲动传播的著名模型Nagumo方程,获得了其多个精确行波解,并简要地分析了它们的传播方式. 相似文献
4.
利用(G′G)-展开法求非线性发展方程行波精确解,并借助两个辅助方程,导出了Maccari方程组的精确解。 相似文献
5.
提出了一种广义的(G′/G)-展开法,利用该方法可以得到非线性发展方程的更多不同种类的精确行波解.利用广义的(G′/G)-展开法得到了耦合KdV方程和广义KdV-mKdV组合方程的行波解. 相似文献
6.
赵艳丽 《江汉大学学报(自然科学版)》2013,41(1):19-22
介绍了求解非线性偏微分方程的方法—(G′/G)-展开法。通过使用该方法,并借助Maple得到了(2+1)维Boiti-Leon-Pempinelli(简称BLP)方程的多种新精确解,其中包括双曲函数解、三角函数解和有理函数解等。 相似文献
7.
通过G′/G展开法,借助计算机代数系统Maple对非线性耦合Klein-Gordon方程组进行求解,得到非线性耦合Klein-Gordon方程组的一系列新的显式精确解.扩大了对非线性耦合Klein-Gordon方程组研究的成果,拓展了G′/G展开法的应用. 相似文献
8.
用G′/G展开法求偏微分方程(组)的行波解,这个过程可转化为求解一个代数方程组,但该方程组一般较大,难于求解.可以用代数形式吴方法解决这个问题,两个算例说明了吴方法的有效性. 相似文献
9.
利用最近提出的(G′/G)-展开法,并借助于计算机代数系统Mathematica,获得了2+1维破裂孤子方程组丰富的显式行波解,分别以含两个任意参数的双曲函数、三角函数和有理函数表示,该方法也适用于其它非线性波方程(组)。 相似文献
10.
11.
利用广义(G′/G)展开法,借助MATLAB数学软件,研究变系数Sharma-Tasso-Olver(STO)方程的精确解.结果表明,用该方法可获得变系数STO方程的精确解. 相似文献
12.
13.
杨立波 《安庆师范学院学报(自然科学版)》2013,(4):19-22
将(G′/G)-展开法进行了改进,应用改进的(G′/G)-展开法对 mKdV 差分微分方程进行求解,借助Mathematica构造出了该方程的多组含参的新的精确解,包括双曲函数形式的孤波解、三角函数形式的周期波解和有理形式的行波解。 相似文献
14.
非线性发展方程是人们认识和解释自然界许多现象时得到的数学模型,研究这些模型的解的性态十分重要,其显式解更是人们研究所必需的.G'/G-展开法是求解非线性发展方程精确解的非常有效的方法之一.利用G'/G-展开法,并借助于辅助方程Riccati方程的5组精确解,导出(2+1)-维EW方程的新精确解,包括有理函数解,三角函数解和双曲函数解. 相似文献
15.
利用推广的(G′/G)-展开法求解Kononpelchenko-Dubrovsky方程 总被引:1,自引:3,他引:1
利用推广的(G′/G) 展开法,借助于计算机代数系统Mathematica,获得了Kononpelchenko Dubrovsky方程丰富的显式行波解,分别以含两个任意参数的双曲函数、三角函数及有理函数表示.该方法也适用于其它非线性波方程(组). 相似文献
16.
何彩霞 《青海师范大学学报(自然科学版)》2021,(2):24-29,41
将(Φ/Ψ)展开法推广应用到广义Zakharov方程组,较简洁地得到了该方程组的丰富新精确解.这些解有利于研究等离子体波的传播特性.该方法也可用于求解其它非线性演化方程的精确解. 相似文献
17.
曹瑞 《贵州大学学报(自然科学版)》2011,28(3):11-14
运用F-展开方法,借助于计算机代数系统Mathematica构造了具有重要物理背景的非线性耦合Klein-Gordon-Schr(o)dinger方程的一系列新的精确解.在极限情况下,获得了多组孤立波解. 相似文献
18.
构造行波解是研究非线性偏微分方程的一个重要分支.主要描述了使用修改的(G'/G)-展开法求解非线性偏微分方程的过程.借助符号计算系统Maple软件,将此方法应用在求解Sharma-Tasso-Olver方程中,获得了该方程的一些新的行波解,例如u1、u2、u4和u5.这些新的结果有助于理解Sharma-TassoOlver方程的物理意义. 相似文献
19.
白玉梅 《湖北民族学院学报(自然科学版)》2013,31(2):175-178
采用结合Riccati方程的(G’/G)-展开法获得了复合KdV-Burgers方程的精确解,其中包括双曲函数解,三角函数解,有理函数解,说明了该方法的有效性. 相似文献
20.
利用(G’/G)展开法求解了组合KdV方程,得到了组合KdV方程的精确行波解。由于此方法中的G为某个一阶常系数线性ODE的通解,故方法具有直接、简洁的优点;更重要的是,这种方法可用于求得其它许多非线性演化方程的行波解。 相似文献