首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于引导滤波的单幅图像去雾算法研究   总被引:2,自引:1,他引:1  
唐鉴波 《科学技术与工程》2013,13(11):3021-3025,3042
基于暗原色先验的单幅图像去雾算法较好地解决了估算雾天场景透射率的问题,算法复原的图像清晰颜色自然。但原始算法计算复杂度高、耗时长、无法满足实时性需求。介绍了引导图像滤波的原理,并将其与暗原色先验结合以改进原始算法;同时分析了滤波参数对去雾结果的影响。实验证明改进的算法在保证原算法去雾效果的同时能使算法复杂度大大降低。  相似文献   

2.
雾天条件下采集的图像存在低对比度和低场景可见度问题,传统的去雾算法时间复杂度高、速度慢,无法应用于实时图像处理。为此,结合大气光特性提出一种改进的基于均值滤波的单幅图像复原方法。该方法以大气散射模型为基础,首先利用均值滤波得到准确的大气耗散函数;引入直方图修正机制下的自适应保护因子,更正明亮区域的大气散射函数;大气光采用效率更高的四叉树算法求解;最后由大气散射模型计算复原图像并进行图像的亮度调整,从而得到一幅清晰的无雾图像。仿真实验结果表明:该算法的场景适应能力强,复原图像色彩感丰富。与经典的去雾算法相比,该算法在保证去雾效果的同时,克服了导向滤波算法时间复杂度高、速度慢的缺陷。  相似文献   

3.
提出一种多滤波联合单一图像快速去雾算法。首先基于大气散射光特性,计算雾天图像最小通道图,给出大气耗射函数初估计;利用双边滤波保边缘的平滑特性,对雾天图像灰度图进行平滑增强处理;再以此滤波图作为引导图,对大气散射图进行引导滤波,生成准确的能体现深度变化的大气散射图。为了正确估计全球大气光,采用循环四分图形法求解雾天图像最小通道图中最亮像素;在此基础上生成视觉上较真实的清晰无雾图像。比较实验表明算法去雾效果更完整、视见度更高、速度更快。  相似文献   

4.
基于边缘保持滤波的单幅图像快速去雾   总被引:1,自引:0,他引:1  
为了解决基于暗通道先验的图像去雾算法运行效率低下的问题以及天空等明亮灰白区域去雾后的色彩失真问题,提出一种基于边缘保持滤波的单幅图像快速去雾算法。首先根据暗通道先验规律,得到粗略的透射率图和大气光估计值;然后用边缘保持滤波算法对粗略透射率滤波得到细节平滑、轮廓清晰的精细透射率图;再用阈值法对灰白明亮区域的透射率修正,之后用边缘保持滤波算法对修正后的透射率进行平滑,得到最终的透射率图。根据估计的大气光和透射率,利用大气散射模型即可恢复出无雾图像。经测试,该算法不仅具有很高的运行效率,而且对各种类型的薄雾图像都有较好的去雾效果。客观评测也表明,该算法在对比度增强程度、色调还原程度、结构信息复原程度方面的综合指标都优于其他算法。另外,所提算法还能够实现图像处理器(GPU)像素级的并行运算,对于分辨率为1 280像素×1 024像素的彩色图像,用型号为NVIDIA GeForce 9 800GT的GPU处理,速度可达10帧/s。  相似文献   

5.
雾霾天气下采集到的退化含噪图像模糊不清、对比度较低;而使用传统基于双边滤波的去雾方法得到的图像偏暗,效果有限。针对这些问题,提出了一种新的基于二次滤波的算法,实现雾霾天气下交通图像去雾处理;利用双边滤波对含雾图像的暗通道图像进行第一次滤波,用引导滤波对图像的透射率粗估计进行二次滤波优化。根据降质模型对含雾图像进行复原,进而得到去雾后的图像。实验效果证明,与传统方法相比,得到的去雾图像与真实场景亮度更加相似,色彩饱和度较好,图像质量较高。  相似文献   

6.
单幅图像去雾方法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
介绍了单幅图像去雾方法的研究现状、分析了基于增强方法和基于复复方法的一些经典图像去雾算法,指出了各种算法的优缺点。综合评价得出基于复原的图像去雾方法优于基于增强的图像去雾方法。针对现有的基于图像复原去雾方法提出了仍需要深入研究的问题,并从建立全面物理模型、探索模型求解的先验知识、设计基于人眼视觉机制的模型求解方法和图像去雾质量评价等几个方面分析如何突破图像去雾的关键技术。最后,对现有技术的发展趋势进行了分析,指出了去雾技术的研究方向。  相似文献   

7.
针对雾天图像对比度低和细节模糊等问题,将图像分解为纹理层和结构层,对含有大部分雾气的结构层进行去雾,对纹理层进行增强.为了避免大气光估计易受白色物体影响,提出一种RGB空间立体判决图,并设计基于自适应阈值约束的大气光估计方法,可有效区分天空和非天空区域;针对暗通道先验处理大面积天空、浓雾区域失效问题,提出一种基于中通道...  相似文献   

8.
为了改善雾天环境下退化图像的视觉效果,提出一种基于物理模型的快速图像去雾算法.算法从大气散射模型出发,从有雾图像中利用腐蚀和膨胀粗略估计出大气耗散函数,再利用指导图像滤波方法细化估计大气耗散函数,进而恢复场景反照率.实验结果表明,算法可以获得更精确的大气耗散函数,复原图像的边缘轮廓及景物特征都比较清楚,可有效抑制晕环效应,且算法速度也有显著提高,可用于实时雾天图像处理.  相似文献   

9.
单幅图像去雾方法研究综述   总被引:1,自引:0,他引:1  
随着计算机视觉技术的发展及其在智能交通、军事以及安全监控等领域的应用需求,图像去雾处理成为计算机视觉领域中的重要问题与研究热点。在雾、霾等天气条件下,大气粒子的散射作用导致成像传感器采集的图像严重降质。图像去雾技术的任务是通过图像增强或图像复原方法去除天气因素对图像质量的影响,以改善图像的视觉效果和方便后期处理。归纳总结了单幅图像去雾方法的研究现状,重点分析了基于图像增强和复原的两大类方法,深入探讨了其中的一些经典算法并对这些算法进行了分析比较,最后针对基于图像复原方法的去雾技术指出了存在的问题并提出了未来的发展趋势。  相似文献   

10.
针对目前去雾算法复杂度高以及复原的图像视觉效果差等问题,提出了一种新颖的去雾方法。首先,对图像的三通道进行高斯低通滤波获取图像的低频信息(亮度分量)后求平均,结合场景深度,估计出雾气深度图,获得的大气光值A比暗通道图中的最大值作为大气光值A具有更强的鲁棒性;其次,经过中值滤波,去噪的同时也维持了图像的边缘,取得较为理想的透射率;最后,通过大气散射模型反演逆过程,获得无雾图像。分析表明:所设计算法的时间复杂度较低、速度快,具有较高的鲁棒性,大大提高了图像的对比度,并取得了较好的清晰化效果。  相似文献   

11.
基于暗通道理论,提出一种改进的单幅图像去雾算法,对雾化图像快速去雾.改进算法采用自适应中值滤波与双边滤波相结合的方法,计算边缘细致清晰的暗通道,根据雾天成像的物理模型估算透射图.与传统算法相比,估算出的透射图细致清晰,无需优化,克服了传统算法用大量时间优化透射图的缺点,大幅降低了算法的复杂度.试验结果表明,该算法可以实现对单幅图像的高质量快速去雾.  相似文献   

12.
针对图像去雾问题, 提出一种基于特征融合的快速单幅图像去雾方法, 解决了暗通道方法存在的块效应问题. 该方法先采用基于K均值聚类的暗通道先验求得粗尺度下的透射率, 再通过分析雾对成像的影响, 提取有雾图像自身能反映景深变化的饱和度作为细尺度的透射率, 最后通过图像融合技术得到精确的透射率. 通过对
各种真实有雾场景进行测试的实验结果表明, 该方法简单且有效, 能得到理想的去雾效果.  相似文献   

13.
针对雾霾条件下拍摄的户外图像,常规去雾后天空区域常常出现的失真问题,提出了一种结合天空区域检测的图像去雾算法;算法先根据暗通道理论估计出大气光强度,使用双边滤波器得到大气光幕,求得透射率图,再结合天空区域检测的结果对透射率进行修正,最后代入雾天成像模型得到复原的图像;实验结果表明:结合天空区域检测的图像去雾算法可以有效地检测出图像中是否存在天空区域,针对检测结果修正的透视率,能够使修复后有天空区域的图像看起来更加自然平滑,没有明显失真,不存在天空区域的图像,图像对比度大大提升,在景深较大的区域恢复出更多的细节;算法对各类图像均可取得较为理想的去雾效果。  相似文献   

14.
在雾霾等能见度低的天气条件下,大气粒子的散射作用造成拍摄的图像质量严重下降.在众多基于物理模型的图像去雾算法中,各种滤波器被广泛得到应用.对4种具有边缘保持特性的滤波器在图像去雾算法的应用进行了研究.实验结果表明,Guided-image滤波器具有更好的保边特性,且处理速度快,更适用于图像去雾.  相似文献   

15.
探讨了暗通道先验去雾算法的原理,针对暗通道先验去雾算法时间复杂度太大的缺点,提出用快速有效的巴特沃兹低通滤波器代替复杂的软抠图方法实现对透射率的平滑与细化;针对暗原色图像在景深交界处存在白边现象采用求区域最大值法加以修正;并给出了自适应的求解全局大气光算法.实验结果表明,改进的暗通道去雾算法在获得满意的图像去雾效果的同时能大大提高图像去雾算法的速度,能满足工程上的实时应用要求.  相似文献   

16.
针对有雾天气会使图像质量降低,影响对图像信息的提取,导致图像的应用价值减少的问题,提出一种基于深度学习的图像去雾算法。首先,对原有雾图像进行单尺度和多尺度的卷积来特征提取,其次再用多尺度卷积核实现图像细节的重建得到粗略的透射率传播图,同时利用原有雾图像中像素点的位置和亮度值得到大气光值,利用导向滤波得到精细透射率传播图和之前得到的大气光值进而反演出无雾图像,最终对无雾图像进行直方图颜色校正。实验结果表明,相比传统去雾算法,该算法对图像细节的处理更加自然并具有很好的视觉效果。  相似文献   

17.
经典的去雾算法无法满足车道线检测的实时性和准确性要求,因此提出一种改进暗通道与边缘检测融合的雾天车道线识别算法。首先对有雾图像进行对比度增强处理,突出边缘、颜色等有效信息,基于道路先验信息对图像进行感兴趣区域处理,利用暗通道先验算法对静态约束图像进行去雾操作,并通过双边滤波器细化透射率图,得到清晰的去雾图像;然后引入动态约束理念,提取车道线可能存在的区域,借助Sobel算子检测动态约束后的车道线区域,提取车道线边缘点;最后利用Hough变换进行准确的车道线拟合。实验表明,改进的去雾算法得到的图像清晰度与对比度更高,满足了车道线检测的准确性与实时性要求;去雾及车道线检测算法平均处理时间为297. 305 ms,满足无人驾驶时间要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号