首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Binary pulsars provide an excellent system for testing general relativity because of their intrinsic rotational stability and the precision with which radio observations can be used to determine their orbital dynamics. Measurements of the rate of orbital decay of two pulsars have been shown to be consistent with the emission of gravitational waves as predicted by general relativity, but independent verification was not possible. Such verification can in principle be obtained by determining the orbital inclination in a binary pulsar system using only classical geometrical constraints. This would permit a measurement of the expected retardation of the pulse signal arising from the general relativistic curvature of space-time in the vicinity of the companion object (the 'Shapiro delay'). Here we report high-precision radio observations of the binary millisecond pulsar PSR J0437-4715, which establish the three-dimensional structure of its orbit. We see the Shapiro delay predicted by general relativity, and we determine the mass of the neutron star and its white dwarf companion. The determination of such masses is necessary in order to understand the origin and evolution of neutron stars.  相似文献   

2.
在相对论平均场理论(RMFT)框架下考虑超子自由度, 用7个参数组计算中子星的质量, 并分析超子耦合常数对中子星最大质量的影响. 结果表明: 对应状态方程(EOS)较硬的3个参数组(NLSH,NL3,NL2), 中子星的最大质量可达已观测到中子星PSR J0348+0432和PSR J1614-2230及双中子星合并GW170817中给出的质量, 即大质量中子星结构中可包含超子相; 随着超子耦合常数χ的增大, 状态方程变硬, 中子星最大质量增大; 当NLSH参数组的χ≥0.6时, 中子星最大质量均大于2M⊙(M⊙为太阳质量). 因此, 合理选择状态方程较硬的参数组与较强超子耦合常数可获得大质量中子星.  相似文献   

3.
Ozel F 《Nature》2006,441(7097):1115-1117
The interiors of neutron stars contain matter at very high densities, in a state that differs greatly from those found in the early Universe or achieved in terrestrial experiments. Matter in these conditions can only be probed through astrophysical observations that measure the mass and radius of neutron stars with sufficient precision. Here I report a determination of the mass and radius of the neutron star EXO 0748 - 676 that appears to rule out all the soft equations of state of neutron-star matter. If this object is typical, then condensates and unconfined quarks do not exist in the centres of neutron stars.  相似文献   

4.
Maraschi L  Treves A 《Nature》1979,279(5712):401-402
THE presence of rotating neutron stars in binary systems is revealed by the existence of X-ray pulsators which are generally associated with massive companions. The evolutionary history of these systems is now relatively clear (see ref. 1 and refs therein). The X-ray phase, which corresponds to accretion on the neutron star of a strong stellar wind \M approximately 10(-6) M(\circ) yr(-1), is preceded by a much longer quiet state, where the primary is unevolved, possibly with a weak wind, \M approximately 10(-9) M(\circ) yr(-1) and the rotational energy loss of the neutron star inhibits accretion. However, with the only exception of PSR1913 + 16, radio pulsars are not found in binary systems. Here, motivated by the recent discovery of gamma-ray emission from slow pulsars(2,3), we suggest (gamma)-ray observations as a way of detecting binaries in the quiet state and compare the expected number with the COS B results. We refer to the review of van den Heuvel(1) where, as a representative case, a system of initial mass 20 + 8 M(\circ) and orbital period 4.7 d is considered. After the first stage of mass exchange and the supernova explosion, one has a neutron star with an unevolved companion of 22.7 M(\circ). The period is now P = 12.6 d. The primary remains on the main sequence (quiet stage) for t(ms) = 3.6 x 10(6)yr. The X-ray phase occurs after the star has left the main sequence, but before it fills its Roche lobe, as an excessive mass transfer absorbs the X-ray emission. Its duration is t(x) approximately 10(4)yr.  相似文献   

5.
Mazzali PA  Deng J  Nomoto K  Sauer DN  Pian E  Tominaga N  Tanaka M  Maeda K  Filippenko AV 《Nature》2006,442(7106):1018-1020
Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\circ, where M\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.  相似文献   

6.
The X-ray source M33 X-7 in the nearby galaxy Messier 33 is among the most massive X-ray binary stellar systems known, hosting a rapidly spinning, 15.65M(⊙) black hole orbiting an underluminous, 70M(⊙) main-sequence companion in a slightly eccentric 3.45-day orbit (M(⊙), solar mass). Although post-main-sequence mass transfer explains the masses and tight orbit, it leaves unexplained the observed X-ray luminosity, the star's underluminosity, the black hole's spin and the orbital eccentricity. A common envelope phase, or rotational mixing, could explain the orbit, but the former would lead to a merger and the latter to an overluminous companion. A merger would also ensue if mass transfer to the black hole were invoked for its spin-up. Here we report simulations of evolutionary tracks which reveal that if M33 X-7 started as a primary body of 85M(⊙)-99M(⊙) and a secondary body of 28M(⊙)-32M(⊙), in a 2.8-3.1-d orbit, its observed properties can be consistently explained. In this model, the main-sequence primary transfers part of its envelope to the secondary and loses the rest in a wind; it ends its life as a ~16M(⊙) helium star with an iron-nickel core that collapses to a black hole (with or without an accompanying supernova). The release of binding energy, and possibly collapse asymmetries, 'kick' the nascent black hole into an eccentric orbit. Wind accretion explains the X-ray luminosity, and the black-hole spin can be natal.  相似文献   

7.
Wang Z  Chakrabarty D  Kaplan DL 《Nature》2006,440(7085):772-775
Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.  相似文献   

8.
Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.  相似文献   

9.
Cottam J  Paerels F  Mendez M 《Nature》2002,420(6911):51-54
The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO0748-676. We identify the most significant features with the Fe XXVI and XXV n = 2-3 and O VIII n = 1-2 transitions, all with a redshift of z = 0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M approximately 1.3-2.0 solar masses; refs 2-5), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter.  相似文献   

10.
Millisecond pulsars are neutron stars that are thought to have been spun-up by mass accretion from a stellar companion. It is not known whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many neutron stars that are accreting mass from a companion star exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond-period brightness oscillations during bursts from ten neutron stars (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting neutron stars, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most neutron-star models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.  相似文献   

11.
Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.  相似文献   

12.
在理论上对中子星的构成组份以及中子星物质的不可压缩性进行不同的设定,通过计算得到一系列对应的中子星质量理论最大值。将这些计算值与观测值进行对比,可预测出某些中子星的构成组份。  相似文献   

13.
讨论了核子的“直接URCA”过程发生的条件,发现在UV14+UVⅡ态式描述的中子星物质中,核子的“直接URCA”过程发生的条件是质子数分数必须超过0.14;强调在中子昨丙“标准冷却”机制和“非标准冷却”机械可能同时存在;对几个没质量中子星的冷却过程的计算结果表明,引力 质量小于约1.6M的中子星核内应发生“标准冷却”过程,而在引力质量大于约1.6M的中子星核内可能存在2种冷却机制。  相似文献   

14.
近年来,研究发现中子星的转动惯量I和四极矩Q存在着一个关系式,即I-Q关系.而且,该关系式不依赖于中子星内部的物态方程,与引力理论相关.因此,对该关系式的研究可用来检验引力理论.de Rham-GabadadzeTolley(dRGT)massive gravity是一种自洽的引力子静止质量不为零的修正引力理论,是目前国际引力理论研究的热点.本论文主要基于该修正引力理论,在慢速旋转近似下,利用多方指数n=0的物态方程,计算了dRGT massive gravity中牛顿极限下的I-Q关系.我们将dRGT massive gravity与爱因斯坦引力中的I-Q关系进行比较,发现引力子质量不会影响I与Q的平方之间无量纲化后的正比关系,但会改变其比例系数.  相似文献   

15.
脉冲星(PSRs)被发现之后,很快地就被证认为中子星(NSs),关于它们的研究极大地丰富了人们对于自然的认识.由于第一颗射电脉冲星的发现以及对强引力场下广义相对论的检验,脉冲星研究者已经两次获得了诺贝尔物理学奖.最近,"中子星"家族中的一些新种类被发现了,它们是:所谓的软伽马射线重复爆(SGRs),反常X射线脉冲星(AXPs),超新星遗迹(SNRs)中的致密中心天体(CCOs)和暗弱热中子星(DTNs).这对理论家们提出了如下的挑战:是否部分或者全部的所谓"中子星"的本质实际上是"奇异星(SSs)"?是否存在所谓的"磁星"(一种具有超强磁场的中子星)?本文论述了"中子星"的观测特性,为理解它们本质所作的理论努力以及不同模型间的争论(尤其是关于SGRs和AXPs).  相似文献   

16.
用我国自行研制的脉冲星观测系统在新疆乌鲁木齐天文站25m天线上成功地观测了8颗脉冲星,并观测到PSR1133+16的模式变化现象,就脉冲星模式变化总题进行一些探讨。  相似文献   

17.
Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.  相似文献   

18.
19.
Geller AM  Mathieu RD 《Nature》2011,478(7369):356-359
In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7?×?10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.  相似文献   

20.
Stassun KG  Mathieu RD  Cargile PA  Aarnio AN  Stempels E  Geller A 《Nature》2008,453(7198):1079-1082
The mass and chemical composition of a star are the primary determinants of its basic physical properties-radius, temperature and luminosity-and how those properties evolve with time. Accordingly, two stars born at the same time, from the same natal material and with the same mass, are 'identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41 +/- 0.01 solar masses, identical to within 2 per cent. Here we report that these twin stars have surface temperatures differing by approximately 300 K ( approximately 10 per cent) and luminosities differing by approximately 50 per cent, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10 per cent. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system. Our findings reveal cosmic limits on the age synchronization of young binary stars, often used as tests for the age calibrations of star-formation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号