首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.  相似文献   

2.
High-resolution mapping of meiotic crossovers and non-crossovers in yeast   总被引:1,自引:0,他引:1  
Mancera E  Bourgon R  Brozzi A  Huber W  Steinmetz LM 《Nature》2008,454(7203):479-485
Meiotic recombination has a central role in the evolution of sexually reproducing organisms. The two recombination outcomes, crossover and non-crossover, increase genetic diversity, but have the potential to homogenize alleles by gene conversion. Whereas crossover rates vary considerably across the genome, non-crossovers and gene conversions have only been identified in a handful of loci. To examine recombination genome wide and at high spatial resolution, we generated maps of crossovers, crossover-associated gene conversion and non-crossover gene conversion using dense genetic marker data collected from all four products of fifty-six yeast (Saccharomyces cerevisiae) meioses. Our maps reveal differences in the distributions of crossovers and non-crossovers, showing more regions where either crossovers or non-crossovers are favoured than expected by chance. Furthermore, we detect evidence for interference between crossovers and non-crossovers, a phenomenon previously only known to occur between crossovers. Up to 1% of the genome of each meiotic product is subject to gene conversion in a single meiosis, with detectable bias towards GC nucleotides. To our knowledge the maps represent the first high-resolution, genome-wide characterization of the multiple outcomes of recombination in any organism. In addition, because non-crossover hotspots create holes of reduced linkage within haplotype blocks, our results stress the need to incorporate non-crossovers into genetic linkage analysis.  相似文献   

3.
Goddard MR  Godfray HC  Burt A 《Nature》2005,434(7033):636-640
Why sex evolved and persists is a problem for evolutionary biology, because sex disrupts favourable gene combinations and requires an expenditure of time and energy. Further, in organisms with unequal-sized gametes, the female transmits her genes at only half the rate of an asexual equivalent (the twofold cost of sex). Many modern theories that provide an explanation for the advantage of sex incorporate an idea originally proposed by Weismann more than 100 years ago: sex allows natural selection to proceed more effectively because it increases genetic variation. Here we test this hypothesis, which still lacks robust empirical support, with the use of experiments on yeast populations. Capitalizing on recent advances in the molecular biology of recombination in yeast, we produced by genetic manipulation strains that differed only in their capacity for sexual reproduction. We show that, as predicted by the theory, sex increases the rate of adaptation to a new harsh environment but has no measurable effect on fitness in a new benign environment where there is little selection.  相似文献   

4.
Recombination, together with mutation, gives rise to genetic variation in populations. Here we leverage the recent mixture of people of African and European ancestry in the Americas to build a genetic map measuring the probability of crossing over at each position in the genome, based on about 2.1 million crossovers in 30,000 unrelated African Americans. At intervals of more than three megabases it is nearly identical to a map built in Europeans. At finer scales it differs significantly, and we identify about 2,500 recombination hotspots that are active in people of West African ancestry but nearly inactive in Europeans. The probability of a crossover at these hotspots is almost fully controlled by the alleles an individual carries at PRDM9 (P?value 相似文献   

5.
A second generation human haplotype map of over 3.1 million SNPs   总被引:2,自引:0,他引:2  
We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.  相似文献   

6.
Fenneropaeneus chinensis is an important species in marine fishery resources and aquaculture in China. A genetic linkage map is essential for improving the efficiency of its breeding by marker-as- sisted selection and identifying commercially important genes. Linkage maps of F. chinensis were constructed with an F2 mapping population (110 progenies) using amplified fragment length polymor- phic (AFLP) marker in this study. Fifty-five AFLP primer combinations produced 532 AFLP markers fitting for map strategy in mapping family. The markers with 3:1 segregating ratios were analyzed using F2 intercross model for the common linkage map, while the markers with 1:1 ratio were analyzed using the pseudo-testcross strategy. The maps of male, female and common were constructed. The female map included 103 markers that formed 28 linkage groups, covering a total length of 1090 cM. All mark- ers were linked with the linkage groups. Segregation distortion was observed for 6 of 103 markers in the female map. The average distance between markers was 14.53 cM and ranged from 4.4 to 24.8 cM. The male map included 144 markers that formed 35 linkage groups. Ten markers remained unlinked in male map. Segregation distortion was observed for 7 of 144 markers in the male map. The total dis- tance of male map covered 1617 cM. The average distance between markers was 16.36 cM. The male map was 32.6% longer than the female map, which may reflect sex-specific recombination rates in Chinese shrimp. The common map was composed of 216 markers, including in 44 linkage groups covering a total distance of 1772.1 cM. Two markers remained unlinked. No distorted markers of 216 markers were shown in the common map. The distance between markers was 10.42 cM. An average estimated genome size for the Chinese shrimp was 2420 cM, which was consistent with the relative size of the Penaeid genome. The distribution of AFLP markers was relatively even in chromosomes of Chi- nese shrimp maps. The linkage analysis presented in this work provided some insight into the level of polymorphism and genetic variation of Chinese shrimp.  相似文献   

7.
Fenneropaeneus chinensis is an important species in marine fishery resources and aquaculture in China. A genetic linkage map is essential for improving the efficiency of its breeding by marker-assisted selection and identifying commercially important genes. Linkage maps of F. chinensis were constructed with an F2 mapping population (110 progenies) using amplified fragment length polymorphic (AFLP) marker in this study. Fifty-five AFLP primer combinations produced 532 AFLP markers fitting for map strategy in mapping family. The markers with 3:1 segregating ratios were analyzed using F2 intercross model for the common linkage map, while the markers with 1:1 ratio were analyzed using the pseudo-testcross strategy. The maps of male, female and common were constructed. The female map included 103 markers that formed 28 linkage groups, covering a total length of 1090 cM. All markers were linked with the linkage groups. Segregation distortion was observed for 6 of 103 markers in the female map. The average distance between markers was 14.53 cM and ranged from 4.4 to 24.8 cM. The male map included 144 markers that formed 35 linkage groups. Ten markers remained unlinked in male map. Segregation distortion was observed for 7 of 144 markers in the male map. The total distance of male map covered 1617 cM. The average distance between markers was 16.36 cM. The male map was 32.6% longer than the female map, which may reflect sex-specific recombination rates in Chinese shrimp. The common map was composed of 216 markers, including in 44 linkage groups covering a total distance of 1772.1 cM. Two markers remained unlinked. No distorted markers of 216 markers were shown in the common map. The distance between markers was 10.42 cM. An average estimated genome size for the Chinese shrimp was 2420 cM, which was consistent with the relative size of the Penaeid genome. The distribution of AFLP markers was relatively even in chromosomes of Chinese shrimp maps. The linkage analysis presented in this work provided some insight  相似文献   

8.
9.
Comparison of human genetic and sequence-based physical maps   总被引:40,自引:0,他引:40  
Recombination is the exchange of information between two homologous chromosomes during meiosis. The rate of recombination per nucleotide, which profoundly affects the evolution of chromosomal segments, is calculated by comparing genetic and physical maps. Human physical maps have been constructed using cytogenetics, overlapping DNA clones and radiation hybrids; but the ultimate and by far the most accurate physical map is the actual nucleotide sequence. The completion of the draft human genomic sequence provides us with the best opportunity yet to compare the genetic and physical maps. Here we describe our estimates of female, male and sex-average recombination rates for about 60% of the genome. Recombination rates varied greatly along each chromosome, from 0 to at least 9 centiMorgans per megabase (cM Mb(-1)). Among several sequence and marker parameters tested, only relative marker position along the metacentric chromosomes in males correlated strongly with recombination rate. We identified several chromosomal regions up to 6 Mb in length with particularly low (deserts) or high (jungles) recombination rates. Linkage disequilibrium was much more common and extended for greater distances in the deserts than in the jungles.  相似文献   

10.
Keightley PD  Otto SP 《Nature》2006,443(7107):89-92
Sex and recombination are widespread, but explaining these phenomena has been one of the most difficult problems in evolutionary biology. Recombination is advantageous when different individuals in a population carry different advantageous alleles. By bringing together advantageous alleles onto the same chromosome, recombination speeds up the process of adaptation and opposes the fixation of harmful mutations by means of Muller's ratchet. Nevertheless, adaptive substitutions favour sex and recombination only if the rate of adaptive mutation is high, and Muller's ratchet operates only in small or asexual populations. Here, by tracking the fate of modifier alleles that alter the frequency of sex and recombination, we show that background selection against deleterious mutant alleles provides a stochastic advantage to sex and recombination that increases with population size. The advantage arises because, with low levels of recombination, selection at other loci severely reduces the effective population size and genetic variance in fitness at a focal locus (the Hill-Robertson effect), making a population less able to respond to selection and to rid itself of deleterious mutations. Sex and recombination reveal the hidden genetic variance in fitness by combining chromosomes of intermediate fitness to create chromosomes that are relatively free of (or are loaded with) deleterious mutations. This increase in genetic variance within finite populations improves the response to selection and generates a substantial advantage to sex and recombination that is fairly insensitive to the form of epistatic interactions between deleterious alleles. The mechanism supported by our results offers a robust and broadly applicable explanation for the evolutionary advantage of recombination and can explain the spread of costly sex.  相似文献   

11.
Towards a resolution of the lek paradox   总被引:13,自引:0,他引:13  
Kotiaho JS  Simmons LW  Tomkins JL 《Nature》2001,410(6829):684-686
Genetic benefits in the shape of 'good genes' have been invoked to explain costly female choice in the absence of direct fitness benefits. Little genetic variance in fitness traits is expected, however, because directional selection tends to drive beneficial alleles to fixation. There seems to be little potential, therefore, for female choice to result in genetic benefits, giving rise to the 'lek paradox'. Nevertheless, evidence shows that genetic variance persists despite directional selection and genetic benefits of female choice are frequently reported. A theoretical solution to the lek paradox has been proposed on the basis of two assumptions: that traits are condition-dependent, and that condition shows high genetic variance. The observed genetic variability in sexual traits will be accounted for, because a proportion of the genetic variance in condition will be captured and expressed in the trait. Here we report results from experiments showing that male courtship rate in the dung beetle Onthophagus taurus is a condition-dependent trait that is preferred by females. More importantly, male condition has high genetic variance and is genetically correlated with courtship rate. Our results thereby represent a significant step towards a resolution of the lek paradox.  相似文献   

12.
One of the most debated questions in evolutionary biology is whether female choice of males with exaggerated sexual displays can evolve as a correlated response to selection acting on genes coding for male attractiveness or high overall viability. To date, empirical studies have provided support for parts of this scenario, but evidence for all key genetic components in a natural population is lacking. Here we use animal-model quantitative genetic analysis on data from over 8,500 collared flycatchers (Ficedula albicollis) followed for 24 years to quantify all of the key genetic requirements of both fisherian and 'good-genes' models on sexual selection in the wild. We found significant additive genetic variances of all the main components: male ornament (forehead patch size), female mate choice for this ornament, male fitness and female fitness. However, when the necessary genetic correlations between these components were taken into account, the estimated strength of indirect sexual selection on female mate choice was negligible. Our results show that the combined effect of environmental influences on several components reduces the potential for indirect sexual selection in the wild. This study provides insight into the field of sexual selection by showing that genes coding for mate choice for an ornament probably evolve by their own pathways instead of 'hitchhiking' with genes coding for the ornament.  相似文献   

13.
Condition-dependent signalling of genetic variation in stalk-eyed flies   总被引:9,自引:0,他引:9  
David P  Bjorksten T  Fowler K  Pomiankowski A 《Nature》2000,406(6792):186-188
Handicap models of sexual selection predict that male sexual ornaments have strong condition-dependent expression and this allows females to evaluate male genetic quality. A number of previous experiments have demonstrated heightened condition-dependence of sexual ornaments in response to environmental stress. Here we show that genetic variation underlies the response to environmental stress (variable food quality) of a sexual ornament (male eye span) in the stalk-eyed fly Cyrtodiopsis dalmanni. Some male genotypes develop large eye span under all conditions, whereas other genotypes progressively reduce eye span as conditions deteriorate. Several non-sexual traits (female eye span, male and female wing length) also show genetic variation in condition-dependent expression, but their genetic response is entirely explained by scaling with body size. In contrast, the male sexual ornament still reveals genetic variation in the response to environmental stress after accounting for differences in body size. These results strongly support the hypothesis that female mate choice yields genetic benefits for offspring.  相似文献   

14.
Sexually antagonistic genetic variation for fitness in red deer   总被引:1,自引:0,他引:1  
Evolutionary theory predicts the depletion of genetic variation in natural populations as a result of the effects of selection, but genetic variation is nevertheless abundant for many traits that are under directional or stabilizing selection. Evolutionary geneticists commonly try to explain this paradox with mechanisms that lead to a balance between mutation and selection. However, theoretical predictions of equilibrium genetic variance under mutation-selection balance are usually lower than the observed values, and the reason for this is unknown. The potential role of sexually antagonistic selection in maintaining genetic variation has received little attention in this debate, surprisingly given its potential ubiquity in dioecious organisms. At fitness-related loci, a given genotype may be selected in opposite directions in the two sexes. Such sexually antagonistic selection will reduce the otherwise-expected positive genetic correlation between male and female fitness. Both theory and experimental data suggest that males and females of the same species may have divergent genetic optima, but supporting data from wild populations are still scarce. Here we present evidence for sexually antagonistic fitness variation in a natural population, using data from a long-term study of red deer (Cervus elaphus). We show that male red deer with relatively high fitness fathered, on average, daughters with relatively low fitness. This was due to a negative genetic correlation between estimates of fitness in males and females. In particular, we show that selection favours males that carry low breeding values for female fitness. Our results demonstrate that sexually antagonistic selection can lead to a trade-off between the optimal genotypes for males and females; this mechanism will have profound effects on the operation of selection and the maintenance of genetic variation in natural populations.  相似文献   

15.
Iyengar VK  Reeve HK  Eisner T 《Nature》2002,419(6909):830-832
Females of the arctiid moth Utetheisa ornatrix mate preferentially with larger males, receiving both direct phenotypic and indirect genetic benefits. Here we demonstrate that the female's mating preference is inherited through the father rather than the mother, indicating that the preference gene or genes lie mostly or exclusively on the Z sex chromosome, which is strictly paternally inherited by daughters. Furthermore, we show that the preferred male trait and the female preference for that trait are correlated, as females with larger fathers have a stronger preference for larger males. These findings are predicted by the protected invasion theory, which asserts that male homogametic sex chromosome systems (ZZ/ZW) found in lepidopterans and birds promote the evolution of exaggerated male traits through sexual selection. Specifically, the theory predicts that, because female preference alleles arising on the Z chromosome are transmitted to all sons that have the father's attractive trait rather than to only a fraction of the sons, such alleles will experience stronger positive selection and be less vulnerable to chance loss than would autosomal alleles.  相似文献   

16.
Meiotic recombination occurs preferentially at certain regions in the genome referred to as hot spots which are important for generating genetic diversity and proper segregation of chromosomes during meiosis. Although observations concerning individual hotspots have given clues as to the mechanism of recombination initiation, the nature and causes of recombination rate variation in the genome are still little known. A rational solution is to estimate and rank recombination rates along the genome. Therefore, it is a high demand for a database that deposits and integrates those data to provide a systematical repository of genome-wide recombination rates. Homologous recombination hotspots database is a web-based database of meiotic recombination rates, which comprises enormous data and information of human, mouse, rat, D. melanogaster, C. elegans and yeast. Users can query the database in several alternative ways. The database stores various details for every sequence, such as chromosome number, hyperlinks to the respective reference, and the sequence in FASTA format.  相似文献   

17.
用同一太谷核不育(Tal)小麦的不育株TaIS65(共同遗传背景)为母本,同时与纯合矮秆、杂合矮秆、纯合高秆、杂合高秆的父本杂交,配制成4种不同的组合类型。对4个杂交组合的F1群体的扬花期和株高遗传分析表明:在Tal轮选群体中,开放授粉随机互交的轮选结果,只能使杂种后代朝着高秆、晚熟的变异方向发展,这是由于Tal材料自身的生物学特点造成的。要提高Tal轮选改良的育种效率,必须选择控制父本的花粉来源,并采取人工控制杂交措施,才能有效地克服由Tal材料自身的生物学特点带来的不利影响,实现各种有利基因型间充分的杂交重组。  相似文献   

18.
Adaptive variation in environmental and genetic sex determination in a fish   总被引:7,自引:0,他引:7  
D O Conover  S W Heins 《Nature》1987,326(6112):496-498
Two general mechanisms of sex determination have been identified among gonochoristic vertebrates: environmental sex determination where offspring become male or female in response to an environmental factor(s) during development (for example, some fishes and reptiles); and genetic sex determination where sex is determined by genotype at conception (as in birds and mammals). How do these sex-determining systems evolve? Direct evidence is virtually non-existent because the sex-determining systems of most species appear to have little genetic variation. Here we provide the first evidence of adaptive variation in environmental and genetic sex determination within a species. We show that in a fish with temperature-dependent sex determination, populations at different latitudes compensate for differences in thermal environment and seasonality by adjusting the response of sex ratio to temperature, and by altering the level of environmental as opposed to genetic control. The adjustments observed are precisely those predicted by adaptive sex ratio theory.  相似文献   

19.
A primitive Y chromosome in papaya marks incipient sex chromosome evolution   总被引:2,自引:0,他引:2  
Liu Z  Moore PH  Ma H  Ackerman CM  Ragiba M  Yu Q  Pearl HM  Kim MS  Charlton JW  Stiles JI  Zee FT  Paterson AH  Ming R 《Nature》2004,427(6972):348-352
Many diverse systems for sex determination have evolved in plants and animals. One involves physically distinct (heteromorphic) sex chromosomes (X and Y, or Z and W) that are homozygous in one sex (usually female) and heterozygous in the other (usually male). Sex chromosome evolution is thought to involve suppression of recombination around the sex determination genes, rendering permanently heterozygous a chromosomal region that may then accumulate deleterious recessive mutations by Muller's ratchet, and fix deleterious mutations by hitchhiking as nearby favourable mutations are selected on the Y chromosome. Over time, these processes may cause the Y chromosome to degenerate and to diverge from the X chromosome over much of its length; for example, only 5% of the human Y chromosome still shows X-Y recombination. Here we show that papaya contains a primitive Y chromosome, with a male-specific region that accounts for only about 10% of the chromosome but has undergone severe recombination suppression and DNA sequence degeneration. This finding provides direct evidence for the origin of sex chromosomes from autosomes.  相似文献   

20.
Becks L  Agrawal AF 《Nature》2010,468(7320):89-92
The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号