首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
对当前土遗址加固材料进行调研和分析基础上,提出了遗址土中加入石灰和水性丙烯酸酯乳液的加固材料方案;并对加固前后土体的强度特性、耐水性能、收缩特性等进行了试验研究。研究结果显示,石灰和水性聚氨酯/聚丙烯酸酯乳液混合加固材料对土遗址保护加固具有良好效果;并提出了加固材料的最优配比。  相似文献   

2.
PS材料加固西北干旱区土遗址试验研究   总被引:2,自引:0,他引:2  
土遗址是大遗址中最难保护的一类,而防风化加固是其中的难点,也是目前国际上普遍关注和攻关的课题,PS材料用于西北干旱区土遗址的防风化加固已获得了初步的成功.室内单轴抗压强度、抗剪强度研究发现,强度提高幅度满足要求,材料具有可重复使用性;通过对PS材料加固土遗址的微观结构特征进行研究,加固后X衍射图谱中部分矿物衍射强度降低和密集低矮的非晶体物相峰群的出现,定性说明,非晶质物相的生成加强了矿物间胶结作用;加固前后的红外谱图基本吻合,没有新晶质物相出现,仅是化学健间结合力略有提高;SEM图像显示骨架颗粒胶结状态由点状接触向胶结接触转变.研究表明PS材料与土作用后加强了土骨架颗粒的连结强度,而土的结构基本保持不变,宏观上改善了遗址土的水稳定性,增强了工程力学性能,满足文物保护的特殊要求.图10,表2,参13.  相似文献   

3.
王赟 《科技信息》2011,(25):266-266
本文从土遗址表面剥蚀加固保护,土遗址裂隙、坍塌的裂隙灌浆、锚固加固及夯筑、培筑和建筑砌体的基础加固保护三方面探讨岩土加固技术在土遗址加固保护中的应用,并就加固处理土遗址过程提出两个要注意的技术要点,以供参考。  相似文献   

4.
中国西北地区存在有大量的土遗址,由于长期受到风吹雨淋及水盐运移导致表面盐分的富集,使表面片状剥离加剧,已经成为土遗址破坏的主要病害之一.通过滴渗和喷洒渗透2种试验,研究了糯米浆液和SH浆液2种新型材料对墙体表面的加固效果,采用检验墙体表面贯入阻力、渗透深度和渗透量的变化检验材料的加固效果.采用红外热成像技术判断加固后的墙体与原有墙体兼容性.结果表明糯米浆液和SH浆液均能作为新的加固土遗址片状剥离的新材料.  相似文献   

5.
对长江流域新石器时代以来环境考古研究问题的思考   总被引:3,自引:0,他引:3  
朱诚 《自然科学进展》2005,15(2):149-153
环境考古是目前PAGES核心计划研究全新世人地相互作用及环境演变的重要领域,长江流域由于新石器时代以来的考古遗址众多,为环境考古研究提供了极好条件.文中认为今后应注重以下几方面的研究:(1)长江上中下游自然环境与文化序列差异性特征及其原因;(2)生土层内人类生存遗迹的寻找;(3)文化间歇层成因;(4)埋藏森林和埋藏古树成因;(5)考古遗址与自然沉积地层的对比;(6)遗址地层中环境质量变化信息的提取;(7)建立遗址地层反映人类活动方式和强度的指标,提取考古地层反映人与自然相互作用的定量化指标信息;(8)考古遗址三维时空和高程分布的GIS研究.由此,将会对过去难以解释的长江流域地貌与环境演变及人类文明孕育发展史等问题获得更多可靠的地层学记录解释.  相似文献   

6.
土遗址加固保护加固材料众多,不同材料各有利弊,为寻求理想的加固材料,加快保护进程,首先对当前常用加固材料水玻璃、丙烯酸树脂和有机硅树脂等从物性特征上分析其加固特点,得出有机硅改性的丙烯酸树脂乳液(硅丙乳液)性能较优良.以榆林明长城土遗址为例评定其加固效果,进行了无侧限抗压强度、耐水和耐盐腐蚀试验等,结果表明硅丙乳液加固土遗址效果良好,可为实地加固保护提供有力参考.  相似文献   

7.
周口店北京人遗址环境地质条件及地质病害机理分析   总被引:1,自引:0,他引:1  
自周口店北京人遗址区被发现后的几十年以来,由于自然和人为因素的影响,在各发掘点内出现了诸多不同类型的地质病害,严重威胁着遗址区的安全与保护.基于此,通过现场及室内试验对遗址区环境工程地质条件进行了分析并在此基础上通过岩石薄片镜下鉴定、岩石化学分析及崩解试验等对影响遗址区病害的因素及机理做了分析.结果发现,周口店遗址区7个发掘点共有20处类型不一、规模不等、变形程度不同的潜在地质病害点.其破坏的原因可以归结为地质、环境及人类活动3个因素,其中着重讨论了环境因素的影响.环境因素分析结果表明,不同地点处由于其胶结物成份不同所以环境因素对其的影响方式也不同.图12,表3,参8.  相似文献   

8.
采用溶胶-凝胶法制备含有纳米二氧化硅颗粒的胶体材料.胶体材料的稳定性和纳米二氧化硅颗粒的粒径主要受正硅酸乙酯含量、氨水浓度、水含量、无水乙醇含量和滴定速度等参数的影响,以具有良好综合防风化性能的甲基三甲氧基硅烷为有机物,通过与二氧化硅溶胶的机械混合而制备有机-无机防风化杂化加固材料.研究结果表明:当杂化材料中甲基三甲氧基硅烷的质量分数为15%~20%时,防风化杂化材料的黏度低(接近于水的黏度)、凝胶时间短且稳定性好;胶体颗粒的添加有效地降低了单一有机物加固涂层的开裂概率;防风化杂化加固材料引起试样的色差变化较小,加固吸收率明显比单一有机物的吸收率高,且涂覆防风化杂化加固材料的石质试样,其耐酸和耐盐性显著提高.  相似文献   

9.
目的为了考古遗址公园遗产旅游可持续发展及遗产文化价值的传播,从而实现文化遗产科学保护。方法理论分析与国际宪章解读,结合实证举例方法。结果考古遗址公园旅游产品设计是以旅游产品的主题化与系列化、再现遗址地景观、充分发挥遗址博物馆旅游功能、提供考古体验旅游产品等为主要开发策略的。结论考古遗址公园旅游产品的开发必须遵循遗产保护的基本原则和遗产旅游发展的基本规律,其旅游产品设计方法是多样的,核心是遗址文化景观的修复与再现。此外,从可持续发展的角度看,遗产旅游产品设计还应强调游客的参与性和产品开发的持续性等。  相似文献   

10.
探讨纳米纤维素加固土遗址的可行性,将羧基改性的纳米晶纤维素(CNC)和纳米纤丝化纤维素(NFC)分别以滴渗或拌和的方式加固遗址土试样,通过不同龄期下的无侧限抗压强度试验、声波测速、水滴入渗试验和崩解试验,评估了加固试样的力学性质、固化龄期、斥水性和耐水性能.结果表明:2种材料均能在较小的掺量下适度的提高遗址土的力学强度, NFC在拌合加固中效果明显,CNC更适用于滴渗加固.声波测速试验反映了各加固试样的强度增长规律,与无侧限抗压强度较吻合.经CNC滴渗的试样斥水性有所提高,崩解速率较未加固试样降低近50%.扫描电子显微镜图像揭示了纳米纤维素与土颗粒间的胶结形态, NFC拌和样与CNC滴渗样孔隙间表现为明显的非晶相的凝絮状胶结,孔隙度大大减小, CNC拌和样胶结物凝聚现象不显著.  相似文献   

11.
结构保护法、保护层法、防护层材料法、电化学保护法和介质处理法等是金属防腐蚀的主要方法,在诸多缓蚀方法中,防护层材料法是一种经济高效且广泛使用的防腐方法。环氧树脂是一种高效的防护层材料,需经过常温固化或加热固化后使用。然而,其固化过程存在的微孔会弱化环氧涂层的耐蚀性。将纳米材料加入环氧树脂中形成环氧树脂复合涂层,可填补环氧涂层中的微孔,提升环氧涂层的防腐效率。首先,详细讨论了影响纳米材料/环氧复合涂层耐蚀性能的因素,探讨了纳米材料/环氧复合涂层的防腐机理。其次,简要介绍了用于环氧涂层的2种纳米材料(石墨烯和金属有机框架材料),总结了石墨烯和金属有机框架材料的改性和修饰方法。最后,从树脂成分、填料成分、机理探究以及开发自愈合涂层等方面对纳米材料/环氧复合涂层应用存在的问题和发展前景进行了展望,提出纳米材料/环氧复合涂层是一种长期防护金属免受腐蚀的方法,未来应致力于研发用于环氧涂层的二维和三维材料。  相似文献   

12.
环氧树脂混凝土力学性能及增强机理   总被引:1,自引:0,他引:1  
通过正交试验方法来合理优化水性环氧树脂为改性材料的混凝土配合比,测定了不同掺量下的水性环氧树脂混凝土在常温下养护7d的力学性能指标,得出最优混凝土配合比.同时比较了在最优混凝土配合比条件下,掺与不惨水性环氧树脂时混凝土标准养护7d和28d的抗压强度和抗折强度,并对水性环氧树脂增强混凝土各种性能指标的增强机理进行了分析.试验结果表明,掺适量水性环氧树脂后,不但改善了混凝土的早期力学性能,而且也有效地改善了混凝土的韧性,使其变形能力得到提高,混凝土的抗压强度和抗折强度也有较明显的提高.  相似文献   

13.
高性能微表处的室内试验研究   总被引:2,自引:0,他引:2  
微表处是一种常见的预防性养护技术,然而在高温多雨的广东地区,微表处罩面存在耐磨耗性能差,使用寿命短等缺点,严重阻碍了该技术在广东高速公路的推广应用.为此,开发了新型微表处技术———高性能微表处,该技术的核心是通过掺入适当比例的水性环氧树脂和水性环氧固化剂,使其在室温环境下发生化学交联反应,形成高粘结性能的空间网状结构.室内湿轮磨耗试验结果表明,相对于常规微表处,高性能微表处的耐磨耗性能和抗水损坏性能提高了约60%.长期路用性能结果表明,高性能微表处的抗滑性能和抗剥落性能均明显优于常规微表处.  相似文献   

14.
化学法制备石墨烯对环氧树脂导电性能的影响   总被引:1,自引:0,他引:1  
通过化学氧化热解膨胀还原法制备了石墨烯,并对石墨烯的化学结构及微观形貌进行表征.将自制的石墨烯以及商业级的碳纳米管、富勒烯、石墨分别作为纳米导电填料加入到环氧树脂中,考察不同碳纳米材料对环氧树脂导电性能的影响.结果表明:所制备的石墨烯是不同于氧化石墨烯和热解膨胀石墨薄层的单层或少数层的二维材料;当石墨烯体积分数为0.25%时,复合材料的电导率发生渗流突变,而当体积分数增大到0.50%时,其电导率为2.02×10-7 S·m-1,导电性能得到显著增强.  相似文献   

15.
环氧丙烯酸酯树脂的制备及其聚氨酯改性   总被引:2,自引:0,他引:2  
采用丙烯酸对环氧树脂进行改性制备环氧丙烯酸酯,通过单因素实验考察催化剂种类对改性工艺条件的影响;设计正交实验探讨反应温度、催化剂用量及阻聚剂用量对改性工艺条件的影响。采用自制的聚氨酯预聚体对环氧丙烯酸酯进行改性研究,考察聚氨酯预聚体的添加及环氧树脂种类对复合材料性能的影响。研究结果表明:制备环氧丙烯酸酯的最佳反应条件为:以N,N-二甲基苯胺为催化剂,反应温度110℃,w(催化剂)=2%,w(阻聚剂)=0.1%;FT-IR表征说明得到目标产物。同时,聚氨酯进行改性明显改善材料的力学性能,聚氨酯预聚体(n(—NCO):n(—OH)=2:1)添加量为25%时,材料的抗压强度提高59.33%,抗拉剪切强度增加3.7倍,材料断面的SEM图表明改性后材料出现韧性材料特征。另外,由双酚F型环氧树脂制备的复合材料的性能明显优于由双酚A型环氧树脂制备的材料性能。  相似文献   

16.
聚氨酯增韧改性环氧树脂胶黏剂研究   总被引:1,自引:1,他引:0  
马云云 《科学技术与工程》2012,12(34):9403-9405,9414
输油管道外防护层腐蚀破坏现象严重,需要高强度复合材料修复技术具有较好的防腐效果,胶粘剂对其防护性能具有至关重要的决定作用。研究表明聚氨酯增韧剂能够提高环氧树脂胶粘剂韧性。在百分数为100的环氧树脂中加入百分数为20的聚氨酯增韧剂,其力学性能得到优化,抗剪切强度达到2.0 N/mm2,剥离强度达到60 N/cm。  相似文献   

17.
功率LED芯片键合材料对器件热特性影响的分析与仿真   总被引:12,自引:0,他引:12  
针对倒装型功率发光二极管器件,描述了功率LED器件的热阻特性,对不同芯片键合材料的功率LED热阻进行了分析,并运用AN SY S软件对3类典型芯片键合材料封装的功率LED热特性进行了仿真。仿真结果表明:采用功率芯片键合材料提高了功率LED的散热特性、降低器件PN结温,而采用普通热沉粘接胶作为芯片键合材料的功率LED的PN结温则较高,因此普通热沉粘接胶不适合用作功率LED的芯片键合材料。  相似文献   

18.
空心玻璃微珠填充环氧树脂的性能与结构研究   总被引:1,自引:0,他引:1  
研究了空心玻璃微珠填充环氧树脂复合材料的密度、压缩强度及破坏形式,并利用SEM定性和定量地分析了微珠在树脂基体中的分散效果.结果表明,玻璃微珠的加入,能有效降低材料的密度,提高材料的比压缩强度,当空心玻璃微珠体积分数在55%左右时,材料的比压缩强度最大,玻璃微珠表面与树脂基体间界面粘结状况最好,此时玻璃微珠在树脂基体中均匀分散.  相似文献   

19.
以润滑剂(亚麻籽油、聚α烯烃或1-丁基-3-甲基咪唑六氟磷酸盐)和修复剂(邻苯二甲酸二丁酯)为芯材,脲醛树脂为壳材,采用原位聚合法合成了双芯材微胶囊,将微胶囊填充在环氧树脂中得到固体自润滑复合材料;使用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TGA)对微胶囊进行了表征;使用摩擦磨损试验机、三维白光干涉仪、光学显微镜、扫描电子显微镜测试了微胶囊/环氧树脂复合材料的摩擦和修复性能。结果表明,微胶囊在整体上呈球形,结构完整,两种芯材均成功包覆;当加入质量分数为10%的微胶囊(芯材为亚麻籽油和邻苯二甲酸二丁酯)时,与环氧树脂相比,在摩擦试验测试1 200 s后自润滑复合材料的摩擦系数降低了约90%,在磨损试验测试2 h后其磨损体积减小约3个数量级(由1010 μm3减小到107 μm3);被划伤的复合材料经50℃加热1 h后,与加热前相比划痕变窄、变浅。以上结果表明,制备的双功能微胶囊/环氧树脂复合材料的耐摩擦磨损性能相对环氧树脂有所提高,同时具有良好的自修复特性,极大地提高了复合材料的综合使用性能。  相似文献   

20.
以超声波法将不同比例的纳米TiO2分散在环氧树脂乳液中,增韧环氧树脂表面施胶剂,提高环氧树脂表面施胶剂的韧性和机械强度。研究了影响纳米TiO2在环氧树脂乳液中均匀分散的因素,并对改性后环氧树脂涂膜进行检测。结果表明改性环氧树脂的条件为:超声时间30 min、环氧树脂温度50℃、超声功率100%、环氧树脂质量分数60%、纳米TiO2添加量3%。此条件下改性环氧树脂乳液粒径为1.69μm,改性环氧树脂的不透明度、储能模量与损耗因子明显提高,玻璃化温度略有降低。将改性环氧树脂用于表面施胶,纸张纵向抗张强度、表面结合强度、耐折度有明显提高,挺度略有下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号