共查询到18条相似文献,搜索用时 93 毫秒
1.
《西北大学学报(自然科学版)》2016,(2):172-177
为研究(3+1)维非线性波动方程的精确解,通过利用不变集方法,得到了(3+1)维非线性波动方程的一些新精确解。该方法也可以用来求解其他非线性偏微分方程。 相似文献
2.
屈改珠 《西北师范大学学报(自然科学版)》2010,46(4):10-11,18
讨论了(1+1)维带有对流项和源项的非线性扩散方程特殊情况的解.利用不变集的思想方法,得到了上述方程的几个新精确解. 相似文献
3.
考虑具非线性项波动方程uxx-utt=pu^3+ru,p,r为实常数,用待定系数的方法得到了它的精确解,文中结果推广两个重要的物理模型的有关结果。 相似文献
4.
尚亚东 《广州大学学报(自然科学版)》2013,12(2):1-6
研究了出现在非线性振动中的一类带阻尼项的非线性波动方程.首先讨论了所论方程的行波解及其极限行为,其次借助于分离变量方法获得了所研究方程的一些显式精确解,讨论了这些解的极限行为.这些解有助于定性或数值分析非线性波动方程解的性态. 相似文献
5.
一个非线性波动方程的精确解 总被引:9,自引:4,他引:9
用齐次平衡方法求出了一个1+维非线性波动方程的精确解,几个有重要应用的非线性数学物理方程可作为该方程的特别情形,所得结果被推广到n+1维空间情形。 相似文献
6.
两类非线性波动方程的精确解 总被引:3,自引:0,他引:3
尚亚东 《兰州大学学报(自然科学版)》1999,35(1):11-17
通过两种不同的方法求出了两类非一性波动方程的一些显式精确解。第一种方法是直接方法,第二种方法是直接方法和假设方法的一种结合。这两种方法都能精确求解两类非线性波动方程,得到的显式精确解包括钟状孤立波解、扭状孤立波解、两种类型的奇异行波解和4种类型的三角函数形周期波解。作为特例,可得到非一性的Pochhammer-Chree方程、对称的mRLW方程的显式精确解。 相似文献
7.
(2+1)维BBM方程的精确解 总被引:4,自引:0,他引:4
夏莉 《西南师范大学学报(自然科学版)》2007,32(3):40-42
通过行波约化一类(2 1)维非线性波动方程和建立与立方非线性Klein-Gordon方程间变换的联系,由此得到其精确解和孤立波解. 相似文献
8.
《贵州师范大学学报(自然科学版)》2016,(3):60-63
不变集方法是构造非线性偏微分方程精确解的一种有效方法,文章利用不变集思想方法,讨论了(1+1)维偏微分方程u_t=A(u)u_(xxx)+B(u)u_xu_(xx)+C(u)(uu_(xx))_x+D(u)u_x+P(u)问题,并得某些情况下方程的精确解。 相似文献
9.
10.
利用不变集方法求(2+1)维拟线性扩散方程的精确解 总被引:1,自引:0,他引:1
屈改珠 《西北大学学报(自然科学版)》2010,40(4)
目的构造(2+1)维拟线性扩散方程的精确解。方法利用不变集方法。结果得到了(2+1)维拟线性扩散方程的一些精确解。结论该方法也可以用来解决其他非线性方程。 相似文献
11.
引入一个简单的变换,把(3 1)维Nizhnik-Novikov-Vesdov(NNV)方程化为一维KdV方程,从而通过已知KdV方程的解得到(3 1)维NNV方程的若干精确解。这种方法可以推广开来,方便地建立起某一高维方程和其它低维非线性方程的联系,然后通过求解低维的非线性方程找到高维非线性方程的精确解。 相似文献
12.
(2+1)维KdV方程的周期波解和孤立波解 总被引:4,自引:0,他引:4
扩展了最近提出的F-展开法并用其求出了(2 1)维KdV方程的Jacobi椭圆函数表示的周期波解,在极限情况下得到了孤立波解和三角函数解.F-展开法作为Jacobi椭圆函数展开法的概括,还可以用来求解其它的非线性发展方程. 相似文献
13.
构造一种新方法来求解非线性微分差分方程.利用计算机工具Maple,得到了(2+1)维Toda方程的孤波解和周期解,并对解进行了初步分析. 相似文献
14.
15.
在Kondratiev分布空间(S)-1中利用Hermite变换和截断展开法,分别得到了(n+1)维Wick型随机Chaffee-Infante方程的白噪声泛函解和(n+1)维变系数Chaffee-Infante方程的精确解. 相似文献
16.
扩展了Hirota法,即将Hirota法中的测试函数用新的测试函数来替代,并利用扩展了的方法来构造(3+1)维孤子方程的新的周期孤波解、周期双孤波解、双周期双孤波解.显然扩展的Hirota方法也可以解其他一些非线性发展方程. 相似文献
17.
扩展了Hirota法以构造(2+1)维K-P方程的新的孤波解,即将Hirota法中的测试函数用新的测试函数来替代,得到了(2+1)维K-P方程的周期孤立波解.显然扩展的Hirota方法也可以解其他类型的非线性演化方程. 相似文献
18.
通过引入一个简单的线性变换,将(2+1)维Zakharov-Kuznetsor(ZK)方程化为一维Korteweg-de Vries(KdV)方程,然后利用KdV方程的多孤立波解得到了ZK方程的多孤立波解.结果表明,此时ZK方程的多孤立波为彼此平行的线孤子. 相似文献