首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为提高渗硼Q235钢焊接后接头的耐磨性,选择三种焊条对渗硼钢进行焊接,分析所得到的渗硼层和焊接接头的金相组织、显微硬度和耐磨性。结果表明:渗硼Q235钢表面峰值显微硬度可达16.17 GPa,经D256、D107、J422焊条焊接后,接头内显微硬度最高分别为3.21、4.90、2.94 GPa,相对耐磨性分别为渗硼钢的2.50、0.96、0.46倍。D107和D256焊条适宜焊接渗硼Q235钢,其耐磨性近于或优于渗硼钢。  相似文献   

2.
为了提高模具表面的磨损性能,采用稀土催化共晶渗硼工艺对45钢模具表面进行了处理,研究了不同稀土加入量对共晶渗硼层组织、渗硼层厚度、硬度梯度及其磨损性能的影响规律,分析了稀土活化催渗机理和材料磨损机制。结果表明:共晶渗硼层组织为硼化物与γ铁的混合物;稀土加入量为9%时共晶渗硼效果最佳,渗硼层厚度比传统固体渗硼层增加近1倍,渗硼层硬度显著提高且硬度梯度减小;稀土元素具有活化催渗硼原子、促进硬质相形成以及细化晶粒、强化晶界的作用;经稀土催化渗硼的试验材料两体磨损性能比传统固体渗硼材料提高约18%,且耐磨行程提高近12倍;试验材料磨损失效主要以显微切削为主;渗硼层厚度增大、硬度提高、硬度梯度减小是稀土催化共晶渗硼材料磨损性能得以提高的主要原因。  相似文献   

3.
渗硼层激光改性机理初探   总被引:3,自引:0,他引:3  
研究了激光处理对20crNiM0钢渗硼层组织性能的影响,并结合激光加热的特点对渗硼层激光改性机理进行了探索。研究表明:渗硼层激光改性处理,由于改变了渗层的组织结构,增加了渗层厚度,从而在保持高硬度和耐磨性的同时,降低了渗层脆性。  相似文献   

4.
研究了稀土对Cr12MoV钢渗硼层组织和性能的影响,并对影响机理进行了初步探讨.结果表明,硼-稀土共渗层的组织、显微硬度、脆性、耐磨性比单一渗硼明显改善,尤其是耐磨性显著提高.  相似文献   

5.
渗硼可以提高汽车齿轮钢20CrMnTi表面的硬度和耐磨性.用盐浴渗硼的新工艺方案处理后,可获得渗层深90 μm,组织为FeB+ Fe2B的渗硼层,最高硬度位于20 μm深度处,为1560 HV.试验显示,试件渗硼层与基体亲和性好,结合牢固,不易剥落,满足汽车齿轮工作要求.  相似文献   

6.
提出了高韧性球墨铸铁 (ADI)在奥氏体温度下渗硼 ,然后等温淬火的复合处理工艺。渗硼采用自行研制的密封剂和渗硼剂 ,密封剂可以有效地覆盖渗硼罐 ,渗硼剂尤其适用于ADI渗硼。经复合处理工艺处理后可获得层深 70 μm ,组织为单相Fe2 B的渗硼层。与未经渗硼处理的相比 ,接触疲劳寿命可以提高 2 .6倍以上 ,为扩大ADI齿轮的应用范围提供试验依据  相似文献   

7.
铸渗法提高灰铁件表面耐磨性   总被引:1,自引:0,他引:1  
采用Mo,W,Cu合金铸渗灰铁件,可以提高其表面的硬度和耐磨性。研究表明,灰铁经过铸渗钼、钨铜合金后,在表面形成厚度为1.5mm的铸渗层,再经过短时间的高温加春扩散层厚度可达6mm,表面硬度明显提高,耐磨性是未经铸渗处理的200%。  相似文献   

8.
为了抑制渗硼层的脆性和解决渗钒层薄的问题,本文对硼钒共渗的组织和性能进行了初步试验探讨,结果表明,硼钒共渗层的相结构为V_c+Fe_2B,具有渗层厚(120μm)、显微硬度高(HV_(0.1)1590—2027)、脆性小和耐磨性好等优点。  相似文献   

9.
本文介绍利用硼砂进行固体渗硼的方法。具有渗层均匀,重复性好,渗剂可翻新连续使用十次以上,渗硼层具有高的硬度(H_(v100g)1200—1600)和高的耐磨性,在饱和氨盐水、盐酸、硫酸中具有较好的抗蚀性能;工艺、设备简单易行,成本低,对小直径、深孔零件也适用等特点。生产实践证明,经渗硼的精纺机“钢令”、饱和氨盐水中使用的阀杆,使用寿命提高三倍以上。文中阐述了渗硼剂化学反应的热力学分析。对渗硼剂的选择,渗硼工艺,渗硼层的组织和性能等进行了研究。  相似文献   

10.
20G钢表面氩弧重熔强化热浸镀铝层的性能   总被引:1,自引:0,他引:1  
为改善热浸镀铝层性能,对20G钢表面热浸镀铝层进行氩弧重熔处理,利用金相显微镜、扫描电子显微镜和x射线衍射仪对氩弧重熔前后的组织进行了观察,并测定了氩弧重熔前后截面显微硬度和袁面的耐磨性。结果表明:热浸镀铝层氩弧重熔强化是可行的。20G热浸镀铝层经氩弧重熔处理后,热浸镀铝层和基体互扩散至均匀混合,沿横截面方向组织由富铝层和扩散层转变为重熔层和过渡层,组织得到改善。20G热浸镀铝层经氩弧重熔处理可获得较高的表面硬度,表面硬度可达110MPa。氩弧重熔处理能明显改善热浸镀铝层的耐磨性,氩弧重熔处理后氩弧重熔层的相对耐磨性是重熔前的8.41倍。  相似文献   

11.
研究了45#碳钢固相渗础工艺和配方,用金相显微镜、显微硬度计等研究渗硼组织结构。结果表明:45#钢渗硼层具有高硬度、高耐磨性,优良的耐腐蚀性和抗高温氧化性能。通过调整工艺改变渗硼层厚度可满足工件不同使用性能的要求。  相似文献   

12.
以亚微米级TiC和CrxCy合金混合粉末为原料,采用激光合金化技术在球铁表面制备出耐磨、耐腐蚀、耐高温的合金化层.利用XRD,SEM,EDS等分析了激光合金化层的相组成及微观组织,并测试了激光合金化层的显微硬度.结果表明,合金化层表面平整,与基体形成了冶金结合.在激光功率、光斑直径一定的条件下,在400~1000 mm/min扫描速度范围内,合金化层厚度随扫描速度增加而减小,合金化层硬度随扫描速度增加而提高.激光合金化层中存在细晶强化和固溶强化等强化作用,大幅度地提高了球铁表面的显微硬度.  相似文献   

13.
本文测试了不同合金元素加入量、经不同等温淬火工艺处理的奥贝球铁磨粒磨损性能,研究了其磨粒磨损机制,发现在低应力的疲劳磨粒磨损条件下,奥贝球铁以切削机制磨损,通过减少合金元素镍加入量、降低奥氏体化温度和等温淬火温度,都使得奥贝球铁的磨粒磨损性能提高。  相似文献   

14.
本文利用大功率CO_2激光器对机床滑动导轨表面进行激光相变硬化处理和研究分析;并通过耐磨性试验研究,获得了相应的磨损曲线和寿命指标。同时,本文对这种表面新技术的实际应用进行了工业试验分析。  相似文献   

15.
本文研究了5CrMnMo钢的硼锆共渗层与渗硼层在磨粒和冲击疲劳磨损试验时的磨损行为。结果表明,在磨粒和冲击疲劳磨损条件下,共渗层的耐磨性比渗硼层的优越,其因在于共渗层脆性比渗硼层的低。共渗与渗硼后经等温淬火的试样比不经等温淬火的试样,其冲击疲劳下的耐磨性得到明显地改善,可认为是残余应力降低与过渡区强化的结果。本试验中的磨损机制,磨粒磨损是塑性变形与犁削机制,冲击疲劳磨损则是冲击疲劳、滑动与磨粒磨损的复合机制。  相似文献   

16.
用销环法研究了奥贝球铁与下贝球铁及具有奥贝组织与下贝组织的一种对比钢的滑动磨损性能,采用的载荷为1-20kgf,速度为0.61-1.54m/s。根据实验结果讨论了奥贝球铁与下贝球铁在不同条件下的磨损行为,得出了一个与传统观点不同的结论:等温淬火球铁中的石墨不利于耐磨性。获得的另一结论是:在描述或比较材料的耐磨性时,除磨损率外,单位载荷的磨损率与转折载荷都是重要的。  相似文献   

17.
奥贝球铁的无润滑滑动磨损机制   总被引:1,自引:0,他引:1  
研究了一种铜钼奥贝球铁在按触应力下与GCr15钢对磨时的无润滑滑动磨损。结果表明当载荷小于98N时,奥贝球铁比GCr15耐磨。磨损过程中的形变诱发马氏体相变是这种材料具有良好耐磨性的重要原因。观察到了轻微磨损向剧烈磨损的转化。轻微磨损的机制是氧化磨损与分层机制;而脱层与分层机制则为造成剧烈磨损的原因。  相似文献   

18.
为强化热浸镀铝层的耐磨性能,将球墨铸铁经780℃热浸镀铝后进行氩弧重熔处理,分析重熔工艺参数对重熔层性能的影响,利用扫描电镜对热浸镀铝层和氩弧重熔层组织进行了观察。结果表明:热浸镀铝层经氩弧重熔处理后,组织改善,由原来富铝层和扩散层转变为重熔层和过渡层。氩弧重熔工艺参数对重熔组织裂纹率、熔深、表面硬度影响较大,重熔电流增大或电弧扫描速度减小时,重熔层裂纹率下降,熔深增加,硬度升高。在重熔电流为70~120 A时,重熔层和过渡层硬度最高可达8.430和8.820 GPa。氩弧重熔处理能明显提高热浸镀铝层的显微硬度。  相似文献   

19.
The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, microhardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization indicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidification. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3–3.1 times higher than the hardness of the substrate. The wear resistance of NCI was also significantly improved after the PTA remelting treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号