首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 113 毫秒
1.
通过5根碳纤维布(CFRP)加固榫卯接长木梁的受弯静力试验,研究CFRP布层数对加固榫卯接长木梁抗弯性能的影响.试验结果表明,榫卯接长木梁在粘贴1~3层平行于梁轴方向的碳纤维布后抗弯承载力提高了29.1~30.9倍,原木梁(参照构件)为弯曲破坏,榫卯接长木梁经碳纤维布加固后由于碳纤维布与木梁剥离而发生破坏.因此,当平行与梁轴方向的碳纤维布层数从1层变化到3层时,木梁的抗弯承载力、刚度和能量吸收能力变化不大.  相似文献   

2.
对在实际工程中已经受损的木梁加固后的结构性能进行研究.通过对8根圆形木梁进行静力试验,研究碳纤维增强复合材料(carbon fiber reinforced polymer,CFRP)布加固受损木梁的抗弯性能,包括破坏特性、极限荷载、刚度、截面应变等结构性能.试验结果表明,CFRP布加固受损木梁具有良好的效果,能够有效提高木梁的承载力和刚度.研究结论对碳纤维工程加固的应用具有一定的参考价值.  相似文献   

3.
内嵌碳纤维筋加固木梁抗弯性能试验   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究碳纤维筋加固矩形木梁的抗弯性能,进行了12根试件的抗弯试验,包括4根未加固梁、4根梁底内嵌1根6 mm碳纤维筋的加固梁、4根梁底内嵌1根8 mm碳纤维筋的加固梁,其中松木和杉木各占一半。试验结果表明:内嵌碳纤维筋加固后的木梁抗弯承载力和延性均有一定的提高,抗弯承载力提高幅度分别为91%~169%(松木)和57%~216%(杉木)。木梁截面应变沿高度方向的分布基本符合平截面假定。最后,基于试验数据拟合,提出了内嵌碳纤维筋加固木梁抗弯承载力的计算公式。  相似文献   

4.
通过对6根矩形截面木梁的静力试验,研究玄武岩纤维布(BFRP)加固木梁的破坏特征、截面应变、极限承载力等抗弯性能.结果表明,BFRP加固木梁能够有效提高木梁的承载力;在加载过程中,BFRP加固木梁的刚度有很大程度的提高.同时,受木节的影响,纤维布加固木梁存在很大的离散性.  相似文献   

5.
CFRP加固不同损伤度钢筋砼梁的抗弯试验   总被引:4,自引:0,他引:4  
通过8根碳纤维(CFRP)布加固补强钢筋混凝土梁的试验,研究了在不同损伤度情况下,不同碳纤维布用量对钢筋混凝土梁抗弯性能的影响与作用,结果表明:碳纤维布加固可以显著提高所有梁的抗弯承载力,同时对于增强梁的抗弯刚度也有良好作用,只是加固前梁的损伤越大,相应梁的承载力则提高得越小,而且对于损伤较大的梁,在二次加载初期,碳纤维布加固后并不能有效地抑制初始裂缝的开展,增加碳纤维布的用量,可以进一步提高梁的抗弯承载力,同时也改变了梁的破坏形式,由碳纤维布的拉断破坏变成拉脱破坏。  相似文献   

6.
通过对4根不同加固条件下,碳纤维布增强钢筋混凝土梁进行纯弯段受力破坏实验,分析了碳纤维布对钢筋混凝土梁抗弯性能的影响和作用.实验表明,钢筋混凝土梁被碳纤维布加固后,抗弯承载力明显提高,但对梁的刚度和变形性能影响不大,根据试验结果,提出了碳纤维布增强钢筋混凝土梁受弯承载力简化计算公式.  相似文献   

7.
碳-芳混杂纤维布加固木梁抗弯性能试验研究   总被引:1,自引:0,他引:1  
通过碳-芳混杂纤维布加固矩形木梁(杉木和松木)的抗弯性能试验,研究了不同层数的碳-芳混杂纤维布加固矩形木梁的破坏形式、抗弯承载力、荷载-挠度曲线和截面应变分布.试验结果表明:与未加固试件相比,木梁经碳-芳混杂纤维布加固后,其抗弯承载力和刚度有了一定程度的提高,抗弯承载力提高幅度在18.1%~62.0%(松木)和7.7%...  相似文献   

8.
为了研究上大下小拼合木梁受弯时的破坏形式、抗弯承载力、截面应变分布等抗弯性能,基于传统构造做法对不同材质、不同尺寸的上大下小拼合梁抗弯性能进行试验研究。基于理论公式推导,结合试验数据修正,提出杉木和松木材质的上大下小拼合木梁抗弯承载力的计算公式。研究结果表明:杉木和松木材质的上大下小拼合木梁的受弯破坏模式均为上梁底部木纤维脆性拉断。2种材质的上下拼合梁的截面应变沿梁截面高度方向的分布均符合平截面假定。为防止拼合木梁出现不可预见的早期脆性破坏,在工程设计和施工时应避免将节疤缺陷放置在木梁的受拉边。  相似文献   

9.
根据预应力碳纤维布加固钢筋混凝土梁的不同受力阶段,给出了各阶段预应力碳纤维布应变和应力的计算方法;根据混凝土结构设计规范,提出了预应力碳纤维布加固有初始荷载的钢筋混凝土梁正截面抗弯承载力计算公式,并给出了公式的适用条件和计算方法。  相似文献   

10.
为了揭示预应力碳纤维布加固混凝土构件的效果,分别采用普通碳纤维布和预应力碳纤维布对4根钢筋混凝土梁进行抗弯性能试验研究。试验分析了预应力碳纤维布加固混凝土梁的屈服荷载、极限荷载、抗弯刚度等性能指标,并分别比较了预应力碳纤维布与普通碳纤维布、不同预应力水平碳纤维布的破坏形态及加固效果。试验结果表明,采用预应力碳纤维布加固混凝土梁可以充分发挥碳纤维布的高强性能,预应力碳纤维布加固的混凝土梁要比普通碳纤维布加固混凝土梁的承载力、刚度等性能指标都有明显提高,而且预应力水平越大,提高的效果越明显。  相似文献   

11.
玄武岩纤维与碳纤维加固连续梁抗弯试验研究   总被引:1,自引:0,他引:1  
为分析玄武岩纤维布与碳纤维布加固混凝土T形截面连续梁的抗弯性能和破坏模式,对7根由两种纤维加固的T形截面连续梁和1根对比梁进行了抗弯试验.试验设计考虑了混凝土连续梁负弯矩区纤维布绕过柱粘贴的情况.试验结果表明,同等工况下,玄武岩纤维布对连续梁的抗弯承载力提高程度较小,但玄武岩纤维布加固梁具有更好的延性.建议国产玄武岩纤维布加固混凝土受弯构件的允许拉应变,对于重要构件不超过0.007,对于一般构件不超过0.01.实际工程中,对混凝土受弯构件加固后的承载力提高幅度要求不高且要求较好延性、耐腐蚀性的情况下,可采用玄武岩纤维复合材料.  相似文献   

12.
为了研究预应力CFRP布加固钢筋混凝土梁的疲劳性能,进行了4根CFRP布加固的钢筋混凝土和1根对比梁的试验研究.试验中考虑的变量为碳纤维应力强度比、疲劳荷载幅和CFRP布粘贴层数.试验梁采用双点对称等幅、等频率加载.试验结果表明:未加固的对比梁受疲劳荷载作用时,裂缝少而宽;非预应力CFRP布加固梁,裂缝多而密,裂缝高度...  相似文献   

13.
为了研究端部锚固方法和预应力水平对碳纤维复合材料(CFRP)板加固钢筋混凝土(RC)梁抗弯性能的影响,进行了6根大尺寸T梁抗弯试验,对失效模式、荷载-挠度曲线、特征荷载、CFRP板强度利用率及延性等指标进行分析。结果表明:锚固方法对RC梁的极限荷载有显著影响,但对开裂荷载和屈服荷载基本没有影响;当预应力水平从0提高到0.5,失效模式从混凝土压碎转变为CFRP拉断,开裂荷载和屈服荷载比未加固试件分别提高了75.0%~237.5%和13.6%~50.9%;极限荷载在混凝土压碎模式下随预应力水平的提高而提高,但在CFRP拉断模式下受预应力水平的影响很小;可靠的端部锚固可提高极限荷载下CFRP的利用率,但施加预应力能明显提高整个受力阶段CFRP的利用率。  相似文献   

14.
基于钢筋混凝土梁在持续荷载作用下混凝土的应力-应变本构关系,研究混凝土徐变对碳纤维片材加固混凝土梁抗弯承载力的影响规律.根据算例分析,得出随着持续荷载水平的提高,加固混凝土梁的抗弯承载力逐渐减小,抗弯承载力的增加值降低系数逐渐增大,混凝土徐变变形使碳纤维片材加固混凝土梁的抗弯承载力增加值降低2.6%左右的结果.该结果可为碳纤维片材加固混凝土结构设计提供参考.  相似文献   

15.
混凝土梁侧面粘贴CFRP布的结构加固性能的试验研究   总被引:7,自引:0,他引:7  
研究采用在混凝土构件侧面粘贴碳纤维布这种新形式加固受弯构件的受力性能,试验研究共设计了4根少筋梁,试验时,先通过2个对称的集中荷载将梁预加载至纯弯段出现一道主裂缝并失效,然后,卸载并用碳纤维布粘贴于梁侧面受拉区予以加强,待粘贴树脂固化后,再重新加载至梁的极限荷载,试验重点研究了该种加固梁的极限荷载,变形,开裂和碳纤维布粘贴形式对加固效果的影响,试验结果表明,该种加固梁不但承载力提高显著,而且具有很好的延性,消除了原来在梁底粘贴碳纤维加固梁在极限状态时因碳纤维布突然断裂而出现的脆性破坏现象,基于试验研究结果,导出了这种加固梁承载力的实用计算方法,该方法计算精度较好且偏于安全,可直接应用于实际加固工程,特别是当构件底面有管道等障碍物时。  相似文献   

16.
应用课题组研发的预应力CFRP布加固混凝土梁技术,对加固梁的疲劳性能进行了试验研究.试验结果表明,在疲劳荷载作用下,预应力CFRP布加固梁的钢筋应变值显著减少,同时预应力CFRP布加固更为有效的改善了混凝土梁的抗裂性能.相对于未加固梁,加固梁的疲劳寿命有显著的增加,表现出良好的抗疲劳性能.  相似文献   

17.
将经历不同加载历史的钢筋混凝土梁按其初始受力的大小划分为三种受力状态,并对这三种受力状态不同的混凝土梁卸载后,采用粘钢板加固法进行加固,使其提高到相同的承载力水平。研究在每一种加载历史下,粘钢板加固法加固的钢筋混凝土梁的抗弯性能,以及不同的初始载荷对加固效果的影响。结粜表明:采用钢板加固可以显著提高梁的抗弯承载力,同时对增强梁的抗弯刚度也有良好作用,加固前梁所受的初始载荷越大,相应梁的承载力则提高得越小,初始载荷较小的加固梁,加固后能很好的阻止原裂缝的扩展,而对于初始载荷较大的加固梁,在二次加载初期,加固材料并不能很好的阻止原裂缝的扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号