首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
利用DTA、XRD、IR、化学结合水和Ca(OH)2生成量测定等方法,研究了煅烧石膏、二水石膏对硅酸盐水泥早期水化过程的影响。结果表明:在水化龄期相同时,掺煅烧石膏水泥浆体中水化产物同掺二水石膏相比,Ca(OH)2生成量大;在一天前无心生成;结合水量在一天前前者高于后者,而一天后则相反。指出了煅烧石膏提高水泥强度的机理在于:由于煅烧石膏的溶解速度较低,在水泥水化初期(1d前),存在于水泥中的铝酸盐相不能形成心,从而减缓了AFt对水泥水化的延缓作用,加速了整个熟料矿物相的水化,提高了水泥的强度。  相似文献   

2.
为提高陶瓷模具石膏使用性能,研究了铝酸盐水泥(AC)对模具石膏凝结硬化、强度、耐水及耐溶蚀性能的影响.采用X射线衍射、扫描电镜和差热分析研究了AC作用机理.结果表明:掺入AC可减少拌合水用量,从而延缓了石膏凝结硬化速率;AC掺入使石膏3 d干抗折强度显著增强,且无后期强度倒缩现象;硬化体耐水、耐溶蚀及耐磨损性能大幅提高,吸水率略有下降,6%为最佳AC掺量.机理分析表明:石膏、铝酸盐水泥复合水化形成由针棒状二水石膏、钙矾石晶体及无定形铝胶构成的网状结构,细针状钙矾石穿插于石膏晶隙间,增强了晶间桥接作用及网状结构稳定性,铝胶紧密填充于晶隙内形成密实的晶胶结构,同时覆盖在石膏表面减少了结晶接触点,使结晶稳定性增强,有效提高了模具石膏综合性能;稳定的水化产物及密实的晶胶结构进一步增强了石膏热稳定性能.  相似文献   

3.
该研究查明了海盐石膏含氯和碱离子过高,因而不能直接用于水泥生产,并据此提出了在适当温度下煅烧海盐石膏,除去其中有害Cl-和碱组分的改性方法,使得海盐石膏能替代二水石膏作为水泥的缓凝剂.研究还发现由于煅烧石膏的溶解速度小,减缓了AFt的生成,削弱了AFt膜的包裹作用,从而加速了熟料矿物的水化,提高了水泥强度.  相似文献   

4.
煅烧磷石膏应用于水泥作缓凝剂和增强剂   总被引:5,自引:0,他引:5  
磷石膏为湿法生产磷酸排放的工业废渣,因含可溶磷杂质,不能直接使用,试验提出对磷石膏在730℃煅烧,应用于配制硅酸盐水泥,结果表明,磷石膏经高温煅烧可消除可溶磷的不良影响,能代替二水石膏作水泥的缓凝剂,且有显的增强效果,对增强机理亦作了探讨。  相似文献   

5.
研究了石膏中掺入普通硅酸盐水泥后的吸水性及力学性能,结果表明,掺加质量分数为6%~8%的普通硅酸盐水泥对石膏的吸水性能具有明显的改善作用,同时对强度有一定贡献。  相似文献   

6.
普通硅酸盐水泥对石膏基混合胶结材的改性研究   总被引:2,自引:1,他引:2  
石膏因其耐水性差,强度较低限制了它的应用。采用掺入普通硅酸盐水泥来改善其不足是一种简单,经济实用的方式。本文叙述了在石膏中掺入的普通硅酸盐水泥量不同时,石膏基混合胶结材的强度变化及其耐水性变化等,并探讨了其内在的发展规律。  相似文献   

7.
在分析、测定了海盐石膏的化学组成和矿物组成及热特性的基础上,研究了不同煅烧条件下制备的改性海盐石膏对硅酸盐水泥主要性能的影响。结果表明:改性海盐石膏既明显地提高水泥的早期强度和略提高水泥的后期强度,还能十分明显地提高高掺量混合材水泥的强度,且水泥的凝结时间正常。制备的最佳工艺参数是:煅烧温度800C为左右,煅烧时间为0.5~1h。  相似文献   

8.
用一种复合调凝增强剂取代传统调凝材料石膏 ,研究表明可使矿渣水泥的矿渣掺量提高 1 0 %~ 2 0 %,强度提高 6MPa左右 ;若采用分步粉磨的技术 ,可提高矿渣掺量 30 %~ 40 %,提高强度 5~ 8MPa.  相似文献   

9.
探讨了石膏类型对道路硅酸盐水泥强度、凝结时间及水化热的影响,研究结果表明:SO3掺量达一定值后,其掺量的多少对水泥强度、凝结时间的影响已不明显,但从强度来看,以外掺SO3为1.5%左右为较佳.低温煅烧(700℃)所得的硬石膏制得的水泥比高温煅烧(1350℃)所得的硬石膏制得的水泥凝结时间短,强度高.二水石膏和硬石膏合掺能改善道路水泥的各项性能,一定范围内,随SO3掺量的增加,水泥的干缩率变小,耐磨性增强.掺二水石膏的水泥干缩率比掺硬石膏的水泥干缩率小,水化放热量稍低,半衰期减小.  相似文献   

10.
磷石膏作水泥缓凝剂的研究   总被引:1,自引:0,他引:1  
磷石膏经过水洗或酸洗后用作立窑和旋窑的水泥缓凝剂,试验结果表明,酸处理的磷石膏配制的水泥凝结性能及强度符合GB175-92,并能满足生产的需要。  相似文献   

11.
研究了铝酸盐水泥(质量分数0.25以内)与硅酸盐水泥混合体系的凝结时间、力学性能和干燥收缩率,并采用量热仪、X射线衍射仪、环境扫描电镜探讨了这些物理力学性能产生差异的原因.研究表明,随着铝酸盐水泥掺量的增加,混合体系的凝结时间不断缩短,力学强度先略升(6%左右时达到最高)后大幅降低,干燥收缩不断增加.少量铝酸盐水泥的掺入,对硅酸盐水泥的水化影响不大,仅造成水化早期浆体钙矾石的生成量微增;但掺量超过一定值时,将显著延缓硅酸盐水泥的水化,浆体中钙矾石不断转化为单硫型水化硫铝酸钙,非稳态水化铝酸钙也逐步发生晶型转变,从而导致微结构明显劣化.  相似文献   

12.
以纯碳酸钙、贝壳和石灰石为混合材,探讨掺量变化对硅酸盐水泥性能的影响.试验表明:硅酸盐水泥掺入质量分数为5%~15%的贝壳混合材后,水泥标准稠度用水量减少.3 d、7 d抗折强度高于普通硅酸盐水泥,28 d抗折强度先增后减.28 d抗压强度损失率为石灰石-硅酸盐水泥>贝壳-硅酸盐水泥>纯碳酸钙-硅酸盐水泥.贝壳混合材最佳掺量为10%,此时减水效果最好.早期强度高,28 d抗压强度损失率最小.贝壳化学组成和微观结构使其具有颗粒形态效应、化学反应活性和微细集料填充效应,可成为石灰石混合材的良好替代品.  相似文献   

13.
通过试验分析和探讨了影响萘高效减水剂与普通硅酸盐水泥适应性的关键因素,并进一步阐明了使用萘系高效减水剂生产高性能混凝土时,应用本试验结果认真选择水泥的重要性。  相似文献   

14.
由于常规油井水泥无法适应热采带来的高温环境,采用改性硅酸盐水泥是稠油热采井固井的主要手段。针对耐高温改性硅酸盐水泥进行了调研与梳理,分析了G级油井水泥的高温衰退机制,总结了目前中外的硅酸盐水泥抗高温技术及其抗高温机理。调研发现:加砂是目前最重要的硅酸盐水泥抗高温手段,在300℃以上的热采井中,常规密度水泥浆体系应掺入45%~60%、细度200目左右的硅粉。在此基础上,选择合理的颗粒级配并添加各类水泥外加剂可以进一步增强高温环境下水泥石的性能。除硅粉以外,中外学者也开发了其他抗高温添加剂,廉价优质的新型抗高温添加剂仍是该领域的研究重点。  相似文献   

15.
通过强度试验、干缩测定、MIP、TG-DSC、NMR分析,研究了不同水热条件下硅酸盐水泥的早期(3 d)水化及其干缩性能。结果表明:约2 d时间的水养护温度由20℃提高到60℃,水泥的早期(3 d)水化程度显著提高,C-S-H凝胶数量显著增多,同时C-S-H凝胶的硅酸盐聚合度提高,C-S-H的表面积减小,致密度提高;水泥的3 d强度显著提高,但28 d强度明显下降;水泥的干缩显著减小。养护温度提高减小干缩的原因是由于干燥前C-S-H凝胶的化学结构等发生变化而使水泥的不可逆干缩显著减小。  相似文献   

16.
用交流阻抗谱法测定了不同水灰比普通硅酸盐水泥净浆水化反应的阻抗谱,实验结果表明:(1)不同水灰比样品复阻抗实部曲线具有相同的变化趋势,即随着水化反应的进行,复阻抗实部曲线均呈现出减小→增大→减小→增大的变化规律;(2)特征点的出现时间随水灰比的增大依次延后,特征点的时间间隔均随水灰比的增大而变大;(3)在硬化期,低水灰比水泥净浆阻抗谱实部曲线有较大的增长斜率;(4)阻抗谱实部和阻抗谱虚部曲线的变化趋势相反,并且在同一次实验测量中,阻抗谱实部和虚部曲线特征点并不对应同一测量时间.  相似文献   

17.
用氧化钙和硅灰为原料,制备不同钙硅比的水化硅酸钙(C-S-H).在C-S-H、硅酸盐水泥中,分别加入三氧化铬,在200℃反应5 h后,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及能谱仪分析产物的物相组成和微观形貌.结果表明,不同钙硅比的C-S-H水热反应产物都为硬硅钙石和托勃莫来石,随着钙硅比的增加,托勃莫来石逐渐减少、硬钙硅石增加.在C-S-H、硅酸盐水泥中,Cr均以CaCrO4的形式存在;在硅酸盐水泥中加入60%的铁矾渣(Cr的质量分数wCr=0.1295%),制成固化体块养护28 d后,其强度为20.3 MPa.用国标GB 5085.3-2007《危险废物鉴别标准-浸出毒性鉴别》对固化体的浸出毒性进行了检测,结果表明浸出液中Cr离子的浓度为0.415 mg/L.  相似文献   

18.
水泥-粉煤灰浆体的水化反应进程   总被引:8,自引:0,他引:8  
为考察粉煤灰对水泥水化进程的影响,系统研究了水泥粉煤灰浆体在不同养护龄期、水胶比、粉煤灰掺量下水泥和粉煤灰反应程度、非蒸发水数量、水化产物数量、孔结构和浆体力学性能.根据实验结果,建立了水泥粉煤灰浆体中水泥反应程度与有效水灰比间的定量关系,推导出水泥和粉煤灰反应程度与胶空比之间的计算公式,并通过研究胶空比与浆体抗压强度关系曲线和比较胶空比与实测孔隙率来验证该公式的正确性;另外,还对水泥粉煤灰浆体的非蒸发水量与水化产物数量间的关系进行了研究,结果表明二者呈线性相关,可用非蒸发水量反映水化产物数量.  相似文献   

19.
Q相对硅酸盐水泥改性的研究   总被引:2,自引:1,他引:2  
研究用A相代替硅酸盐水泥中的主要成分C3S,对硅酸盐水泥改性。通过Q相与硅酸盐水泥中矿物C2S,C4AF共存条件的研究,得到Q相-C2S-CA-C4AF体系。实验表明,此系列水泥具备烧成温度低,早期水化强度高的优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号