首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleation and propagation of h011]superdislocations in intermetallic TiAl were investigated using molecular dynamics simulations and static energetics calculation,as part of our systematic effort to understand the twining and dislocation behavior of alloys based on c-TiAl.It was found that compared to ordinary dislocations in disordered crystals,superdislocations in ordered TiAl lattice behave differently when sheared in the two opposite senses along[0"11]direction.This difference is due to the lower L10lattice symmetry compared with the face-centered cubic(fcc)lattice that it based on,with different yield stress and strain,and dislocation core dissociation and motion.Superdislocations nucleated in the form of loops dissociated in a planar manner into four Shockley partials separated by three kinds of faults:superlattice intrinsic stacking fault(SISF),anti-phase domain boundary(APB)and complex stacking fault(CSF),with partial separations depending on the sense of shearing and dislocation character.During loop expansion,the dislocation core changes both in width and dissociation manner depending on the character of the segment in the loop.The core contains four partials close to edge orientation,gradually changing to three fold near 60°,and finally into twofold dissociationaround 30°character.Superdislocations may have multiple critical resolved shear stresses(CRSS)for motion depending on dissociation and shearing sense even for the same slip system,with lower critical stress for the motion when SISF is in leading position.  相似文献   

2.
The stacking fault energies of Ti-46Al-8.5Nb-0.2W alloy at 298 K and 1273 K were determined. The principle for the determination of the stacking fault energies is based on the fact that the stacking fault energy and the elastic interaction energy acting on the dissociated partial dislocations are equal. After the compress deformations with the strain of 0.2% at 298 K and 1273 K, and water quench to maintain the dislocation structures deformed at 1273 K, the dissociation distances between two partial dislocations were determined by weak beam transmission electron microscopy (WBTEM) technique. Based on these dissociation distances and the corresponding calculation method, the stacking fault energies were determined to be 77-81 mJ/m2 at 298 K and to be 57-60mJ/m2 at 1273 K respectively.  相似文献   

3.
The electronic structure of an edge dislocation doped Ti lying in the (001) plane with Burgers Vector along [100] direction in body-centered cubic iron is investigated using the first principles discrete variational method (DVM) based on the density-functional theory. The binding energy, impurity formation energy, interatomic energy, Mulliken orbital populations and charge density difference are presented in this paper. By calculating the binding energy of the clean dislocation system and the Ti-doped system, it is found that the binding energy of Ti-doped dislocation system is lower than that of the clean dislocation system, which implies that the Ti-doped dislocation system is more stable than the clean dislocation system. The calculated result of the impurity formation energy predicts the trapping effect of dislocation core for Ti, which shows that Ti atom prefers to occupy the place at the dislocation core. The calculated results of the interatomic energy and the difference charge density of dislocation doped Ti system indicate that the stronger bonding formed between the Ti impurity and its neighbor Fe atoms will affect the mechanical property of edge dislocation. Considering the influence of Ti on the electronic structure and the energies, we can predict that the trace Ti in transition metal Fe with dislocation defect can give a significant contribution to the solid solution hardening effects and will influence the mechanical property of materials.  相似文献   

4.
The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe–22Mn–0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis. The steel showed high susceptibility to hydrogen embrittlement, which led to 62.9% and 74.2% reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen, respectively. The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents. The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure, stacking fault probability, and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques. The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults, and deformation twinning within those grains which have tensile axis orientations close to 111//rolling direction and 112//rolling direction. The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.  相似文献   

5.
The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis.The steel showed high susceptibility to hydrogen embrittlement,which led to 62.9%and 74.2%reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen,respectively.The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents.The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure,stacking fault probability,and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques.The results reveal that the addition of hydrogen promotes planar dislocation structures,earlier nucleation of stacking faults,and deformation twinning within those grains which have tensile axis orientations close to<111>//rolling direction and<112>//rolling direction.The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.  相似文献   

6.
The steady-state absorption and fluorescence emission positions of diprotonated meso-tetrakis(4-sulf- onatophenyl) porphyrin (H4TPPS2 ) are dependent on the polarity of the selected two solid ionic liquids (ILs) and are red-shifted with the increase of cation size. The solvation dynamics process of H4TPPS2- in these ILs occurs on two well-separated time scales. The short components with 121.2-128.6 ps arise from the local motion of the ion-pairs in close proximity to the porphine core, and the long components with 1056.6-1261.8 ps are due to the collec- tive translation motions of the ion-pairs. The dynamic Stokes shifts and the relaxation times increase with the increasing cation size of the ILs.  相似文献   

7.
FGH96 is a powder metallurgy nickel based superally used for turbine disk of aero-engines. In the present study FGH96 alloy with four different γ' precipitate microstructures were produced via solution heat-treatment with different cooling rates, and the maximum cooling rate reached 400°C/min which was a super cooling rate for Nickel-based superalloy. The creep tests were conducted for PM FGH96 alloy under the testing condition of 704°C and 690 MPa. The relationship between the creep properties and the distribution of γ' precipitate was established. The creep mechanism was analyzed by using TEM and ACTEM, and the dislocation movement was studied at the atomic scale. The creep strain rate was calculated through a physically based crystal slip model established based on crystal plasticity. The calculated results were consistent with the test ones, illustrating the validity of the model. The fracture mechanism was also investigated, and the results showed that the creep cracks generated on the surface due to the oxidation. It was observed that the cracks propagated in different ways depending on the different average diameters of γ' precipitate. With the decrease of the average γ' precipitate size,the critical shearing stress increased and the resistance of the dislocation slipping increased. The fracture mechanism for the primary stage transformed from intragranular to intergranular due to the change of dislocation slipping.  相似文献   

8.
Previously, we have reported tris(ethynylpyridine) macrocycles as synthetic receptors for ribofuranosides, deoxyribofuranosides, and glucopyranosides. consisted of “meta”-tethered ethynylpyridine trimers. The hydrogen-bonding skeletons of the macrocycles If the ethynylpyridine unit is polymerized, the resulting oligo-and poly(rneta-ethynylpyridine) s would adopt unfolded, somewhat zigzag conformations because each pyridine nitrogen is mainly located on opposite sides of the ethynediyl bonds to cancel the dipoles. When the polymer meets with a saccharide, its pseudolinear conformation may be guided to a well-ordered helical structure in order that the nitrogen atoms of the pyridine rings inwardly interact with peripheral saccharide-OH groups in a manner similar to those of the macrocycles (Fig. 1). Thus, the chirality of saccharides added can be transferred to the helical sense of the polymer, depending on the stereochemistry of the saccharides.  相似文献   

9.
Study on estimate method of wave velocity and quality factor to fault seals   总被引:4,自引:0,他引:4  
Based on ultrasonic test of fault rocks, the responses for wave velocity and quality factor (Q value) to lithology, porosity and permeability of fault rocks and mechanical property of faults are studied. In this paper, a new quantitative estimate method of fault seals is originally offered. The conclusions are as follows: (1) Wave velocity and Q value increase and porosity decreases with the increase in stress perpendicular to joint; (2) In compressive and compresso-shear fault rocks that are obviously anisotropic compared with their original rocks, the wave velocity and Q value are greater in the direction parallel with foliation, and usually less perpendicular to it. In tensile and tenso-shear fault rocks that are not obviously anisotropic, the wave velocity and Q value are under that of original rocks; (3) In foliated fault rocks, the direction with minimal wave velocity and Q value is the best direction for sealing; on the contrary it is the best for flowing; (4) Structural factures develop mainly along foliation, the minimal wave velocity and Q value reflect the flowing capacity in parallel direction to foliation, and the maximal wave velocity as well as Q value reflect the sealing capacity in normal direction to foliation. The new estimate method is based upon contrast of wave velocity and Q value between fault rocks and their original rocks, and is divided into three parts that are respectively to identify rock's lithology, to judge mechanic property of faults and to Judge sealing capacity of faults. Although there is vast scale effect between ultrasonic wave and seismic wave, they have similar regularity of response to fabric and porosity of faults. This research offers new application for seismic data and petrophysical basis for seismological estimation of fault seals. The estimate precision will be improved with the enhancement of three-dimensional seismic prospecting work.  相似文献   

10.
The influence of alloying elements on the stacking fault energy (SFE) of Mg ? Y? Zn? Zr alloys was calculated by using first-principles, and the microstructure of as-cast Mg-1.05Y-0 .79Zn-0.07Zr (mole fraction, %) alloy prepared by conventional casting was investigated by SEM, TEM and HRTEM. The block-like long period stacking orde red (LPSO) phase, the lamellar LPSO phase and stacking faults were observed simulta neously and the lamellar LPSO structure an d stacking faults were both formed on (0001)α-Mg habit plane and grown or extended along [010-1]α-Mg direction. The calculation results by the first-principles showed that the addition of Y can sharply decrease the stacking fault energy of the Mg? Zn?Y? Zr alloy, while Zn slightly increases the stacking fault energy of the alloy. The influence of stacking fault energy on the formation of LPSO was di scussed. It shows that LPSO may nucleate directly through stacking faults and the lower stacking fault energy was in favor of formation of LPSO.  相似文献   

11.
1918 Nan’ao earthquake (M7.5) occurred in the northeast coastal areas of Guangdong Province. With the seismogeological survey of the epicentral area and history materials analyses, the earthquake epicenter was estimated to locate in the intersection part of the Binhai fault zone (Littoral) and Huanggangshui fault, which strikes NEE and NW, respectively. The activities of the NEE-striking thrust fault and NW-striking extensional fault that were attributed to 1918 Nan’ao earthquake occurred in the Dongshan Island of the epicentral area; they reflected the focal stress field with compression in NW-SE direction and extension in NE-SW direction. The isoseismal contour of seismic intensity X shows a shape of ‘X’ composed of two mutually overlapping ellipses with two axes striking NEE and NW, respectively, and such shape implies that the occurrence of this earthquake is controlled by a pair of conjugate seismotectonic faults constituted by the NEE-striking Binhai fault zone and the NW-striking Huanggangshui fault. The Binhai fault zone is a dominant seismogenic structure, and the NW-striking Huanggangshui fault is the subdominant one. The onshoreoffshore deep seismic profile that crossed the epicentral area and was perpendicular to the strike of the Binhai fault zone was obtained. According to the analyses of the seismic data, the Binhai fault zone is defined as a low velocity zone with SE dip-slip in thecrustal structure section. The Binhai fault zone is a boundary fault between the South China subplate and South China Sea subplate. The crust structure on the northwest side of Binhai fault zone is a normal continental crust with a thickness of 30 km, and the one on the southeast side of the fault zone is a thinning continental crust with a thickness of 25―28 km. The Binhai fault zone is an important seismogenic fault and also is an earthquake-controlling fault. The intersection part between the Binhai fault zone and the low velocity zone of upper crust is advantageous to stress concentration and strain energy accumulation, and presents the deep dynamic conditions for the earthquake’s pregnancy and occurrence.  相似文献   

12.
Seismograms near source fault were synthesized using the hybrid empirical Green's function method where the discretely simulated seismic waveforms are used for Green's functions instead of the observed waveforms of small earthquakes. The Green's function seismic waveforms for small earthquake were calculated by solving wave equation using the pseudo-spectral method with the staggered grid real FFT strategy under a detailed 2-D velocity structure in Kobe region. Magnitude and seismic moment of simulated Green's function waveforms were firstly determined by using the relationship between fault length and corner frequency of source spectrum. The simulated Green's function waveforms were employed to synthesize seismograms of strong ground motion near the earthquake fault. The synthetic seismograms of the target earthquake were performed based on the model with multiple source rupture processes. The results suggest that synthesized seismograms coincide well with observed seismic waveforms of the 1995 Hyogo-ken Nanbu earthquake. The simulated Green's function method is very useful for prediction of the strong ground motion in region without observed seismic waveforms. The present technique spreads application field of the empirical Green's function method.  相似文献   

13.
The optimized growth parameters of graphene with different morphologies,such as dendrites,rectangle,and hexagon,have been obtained by low-pressure chemical vapor deposition on polycrystalline copper substrates.The evolution of fractal graphene,which grew on the polycrystalline copper substrate,has also been observed.When the equilibrium growth state of graphene is disrupted,its intrinsic hexagonal symmetry structure will change into a non-hexagonal symmetry structure.Then,we present a systematic and comprehensive study of the evolution of graphene with different morphologies grown on solid copper as a function of the volume ratio of methane to hydrogen in a controllable manner.Moreover,the phenomena of stitching snow-like graphene together and stacking graphene with different angles was also observed.  相似文献   

14.
Thrust-nappe structures and extensional structures simultaneonsly occur in the northern part of the Dabie Mountains. The systematic structural study reveals that extensional structures along the Mozitan-Xiaotian fault and thrust-nappe structures that take the Jinzhai-Shucheng fault as their frontal thrust share the same shear sense, and display a transitional relationship from the ductile extensional structure of deep level in the south to the ductile-brittle and brittle thrust-nappe structure of shallow level in the north. The extensional and thrnst-nappe structures in the region are explained to result from post-collisional processes by the continuous subduction of the Yangtze continental block and the extension induced by the uplifting of the core part of the Dabie Mountains, which are components of the exteasional structures produced in the exhumation process of the ultrahigh pressure metamorphic rocks in the Dabie Mountains. Because of the frontal blocking in the process of the north-westward spreading, the extension and detachment of the low-grade metamorphic rocks along the Mozitan-Xiaotian fault was transformed into the northwestward thrustiag, resulting in the thrust-nappe structures. They developed in the period of 200-170 Ma, maybe last till the late Jurassic.  相似文献   

15.
1Introduction Previously, we have reported tris(ethynylpyridine) macrocycles as synthetic receptors for ribofuranosides, deoxyribofuranosides, and glucopyranosides[1]. The hydrogen-bonding skeletons of the macrocycles consisted of "meta"-tethered ethynylpyridine trimers. If the ethynylpyridine unit is polymerized, the resulting oligo- and poly(meta-ethynylpyridine) s would adopt unfolded, somewhat zigzag conformations because each pyridine nitrogen is mainly located on opposite sides of the ethynediyl bonds to cancel the dipoles. When the polymer meets with a saccharide, its pseudolinear conformation may be guided to a well-ordered helical structure in order that the nitrogen atoms of the pyridine rings inwardly interact with peripheral saccharide-OH groups in a manner similar to those of the macrocycles (Fig. 1). Thus, the chirality of saccharides added can be transferred to the helical sense of the polymer, depending on the stereochemistry of the saccharides.  相似文献   

16.
In order to study uncertainty reasoning and automatic reasoning with linguistic terms, in this paper, the set of basic linguistic truth values and the set of modifiers are defined, according to common sense; partially orderings are defined on them. Based on it, a lattice implication algebra model L18 of linguistic terms is built; furthermore, its some basic properties are discussed.  相似文献   

17.
Three-dimensional simulations were carried out molecular dynamics (MD) to study the contact and sliding processes between diamond points with different tip radius of curvature and surfaces of single crystal copper. The material deformation, abrasion mechanism, lattice defects, the force of contact process, and the sliding friction process were investigated. The simulation results show that the contact force, dislocations, and stacking fault defects, increase during the contact process with increasing contact depth or tip radius of curvature. The dislocations emit along the [10i-] and [i-01] direction and then a glide band is formed. It was also found that a greater tip radius of cur- vature results in a larger groove and more material defor- mation. The normal force and friction increase with increasing tip radius of curvature, but the coefficient of friction decreases. The stacking faults spread along the sliding direction and increase with increasing tip radius of curvature. In addition, the number of upheaval atoms increases as the radius of tip curvature or sliding distance increases.  相似文献   

18.
A quasi three dimensions molecular dynamic method was used to simulate the effect of hydrogen on dislocation emission and crack propagation in nickel. In situ observation in a transmission electron microscope (TEM) was used to confirm the simulation results. The simulation result indicated that hydrogen solubilized in nickel decreased the critical stress intensity for the dislocation emission, i.e., hydrogen enhanced dislocation emission. In situ observation in TEM showed that hydrogen enhanced dislocation emission and motion before the initiation of hydrogen-induced crack.  相似文献   

19.
Internal faults in three phase induction motors can result in serious performance degradation and eventual system failures if not properly detected and treated in time. Artificial intelligence techniques, the core of soft-computing, have numerous advantages over conventional fault diagnostic approaches; therefore, a soft-computing system was developed to detect and diagnose electric motor faults. The fault diagnostic system for three-phase induction motors samples the fault symptoms and then uses a fuzzy-expert forward inference model to identify the fault. This paper describes how to define the membership functions and fuzzy sets based on the fault symptoms and how to construct the hierarchical fuzzy inference nets with the propagation of probabilities concerning the uncertainty of faults. The designed hierarchical fuzzy inference nets efficiently detect and diagnose the fault type and exact location in a three phase induction motor. The validity and effectiveness of this approach is clearly shown from obtained testing results.  相似文献   

20.
Tensile fatigue tests were designed to study the relation between the tangential magnetic memory signal and dislocations. According to experimental results, in the early stage of fatigue, the magnetic signal and the dislocation density rapidly increase; while in the middle stage, the magnetic signal gradually increases, the dislocation density remains steady, and only the dislocation structure develops. On the other hand, in the later stage, the magnetic signal once again increases rapidly, the dislocation structure continues to develop, and microscopic cracks are formed. Analysis reveals that the dislocations block the movement of the domain wall, and the area of dislocation accumulation thus becomes an internal magnetic source and scatters a field outward. In addition, the magnetic memory field strengthens with increasing dislocation density and complexity of the dislocation structure. Accordingly, the dislocation pinning factor related with the dislocation density and the dislocation structure has been proposed to characterize the effect of dislocations on the magnetic memory signal. The magnetic signal strengthens with an increase in the dislocation pinning factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号