首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doiron B  Chacron MJ  Maler L  Longtin A  Bastian J 《Nature》2003,421(6922):539-543
Stimulus-induced oscillations occur in visual, olfactory and somatosensory systems. Several experimental and theoretical studies have shown how such oscillations can be generated by inhibitory connections between neurons. But the effects of realistic spatiotemporal sensory input on oscillatory network dynamics and the overall functional roles of such oscillations in sensory processing are poorly understood. Weakly electric fish must detect electric field modulations produced by both prey (spatially localized) and communication (spatially diffuse) signals. Here we show, through in vivo recordings, that sensory pyramidal neurons in these animals produce an oscillatory response to communication-like stimuli, but not to prey-like stimuli. On the basis of well-characterized circuitry, we construct a network model of pyramidal neurons that predicts that diffuse delayed inhibitory feedback is required to achieve oscillatory behaviour only in response to communication-like stimuli. This prediction is experimentally verified by reversible blockade of feedback inhibition that removes oscillatory behaviour in the presence of communication-like stimuli. Our results show that a sensory system can use inhibitory feedback as a mechanism to 'toggle' between oscillatory and non-oscillatory firing states, each associated with a naturalistic stimulus.  相似文献   

2.
Froemke RC  Merzenich MM  Schreiner CE 《Nature》2007,450(7168):425-429
Receptive fields of sensory cortical neurons are plastic, changing in response to alterations of neural activity or sensory experience. In this way, cortical representations of the sensory environment can incorporate new information about the world, depending on the relevance or value of particular stimuli. Neuromodulation is required for cortical plasticity, but it is uncertain how subcortical neuromodulatory systems, such as the cholinergic nucleus basalis, interact with and refine cortical circuits. Here we determine the dynamics of synaptic receptive field plasticity in the adult primary auditory cortex (also known as AI) using in vivo whole-cell recording. Pairing sensory stimulation with nucleus basalis activation shifted the preferred stimuli of cortical neurons by inducing a rapid reduction of synaptic inhibition within seconds, which was followed by a large increase in excitation, both specific to the paired stimulus. Although nucleus basalis was stimulated only for a few minutes, reorganization of synaptic tuning curves progressed for hours thereafter: inhibition slowly increased in an activity-dependent manner to rebalance the persistent enhancement of excitation, leading to a retuned receptive field with new preference for the paired stimulus. This restricted period of disinhibition may be a fundamental mechanism for receptive field plasticity, and could serve as a memory trace for stimuli or episodes that have acquired new behavioural significance.  相似文献   

3.
Lendvai B  Stern EA  Chen B  Svoboda K 《Nature》2000,404(6780):876-881
Do changes in neuronal structure underlie cortical plasticity? Here we used time-lapse two-photon microscopy of pyramidal neurons in layer 2/3 of developing rat barrel cortex to image the structural dynamics of dendritic spines and filopodia. We found that these protrusions were highly motile: spines and filopodia appeared, disappeared or changed shape over tens of minutes. To test whether sensory experience drives this motility we trimmed whiskers one to three days before imaging. Sensory deprivation markedly (approximately 40%) reduced protrusive motility in deprived regions of the barrel cortex during a critical period around postnatal days (P)11-13, but had no effect in younger (P8-10) or older (P14-16) animals. Unexpectedly, whisker trimming did not change the density, length or shape of spines and filopodia. However, sensory deprivation during the critical period degraded the tuning of layer 2/3 receptive fields. Thus sensory experience drives structural plasticity in dendrites, which may underlie the reorganization of neural circuits.  相似文献   

4.
C C Pack  V K Berezovskii  R T Born 《Nature》2001,414(6866):905-908
In order to see the world with high spatial acuity, an animal must sample the visual image with many detectors that restrict their analyses to extremely small regions of space. The visual cortex must then integrate the information from these localized receptive fields to obtain a more global picture of the surrounding environment. We studied this process in single neurons within the middle temporal visual area (MT) of macaques using stimuli that produced conflicting local and global information about stimulus motion. Neuronal responses in alert animals initially reflected predominantly the ambiguous local motion features, but gradually converged to an unambiguous global representation. When the same animals were anaesthetized, the integration of local motion signals was markedly impaired even though neuronal responses remained vigorous and directional tuning characteristics were intact. Our results suggest that anaesthesia preferentially affects the visual processing responsible for integrating local signals into a global visual representation.  相似文献   

5.
Selective gating of visual signals by microstimulation of frontal cortex   总被引:21,自引:0,他引:21  
Moore T  Armstrong KM 《Nature》2003,421(6921):370-373
Several decades of psychophysical and neurophysiological studies have established that visual signals are enhanced at the locus of attention. What remains a mystery is the mechanism that initiates biases in the strength of visual representations. Recent evidence argues that, during spatial attention, these biases reflect nascent saccadic eye movement commands. We examined the functional interaction of saccade preparation and visual coding by electrically stimulating sites within the frontal eye fields (FEF) and measuring its effect on the activity of neurons in extrastriate visual cortex. Here we show that visual responses in area V4 could be enhanced after brief stimulation of retinotopically corresponding sites within the FEF using currents below that needed to evoke saccades. The magnitude of the enhancement depended on the effectiveness of receptive field stimuli as well as on the presence of competing stimuli outside the receptive field. Stimulation of non-corresponding FEF representations could suppress V4 responses. The results suggest that the gain of visual signals is modified according to the strength of spatially corresponding eye movement commands.  相似文献   

6.
Houweling AR  Brecht M 《Nature》2008,451(7174):65-68
Understanding how neural activity in sensory cortices relates to perception is a central theme of neuroscience. Action potentials of sensory cortical neurons can be strongly correlated to properties of sensory stimuli and reflect the subjective judgements of an individual about stimuli. Microstimulation experiments have established a direct link from sensory activity to behaviour, suggesting that small neuronal populations can influence sensory decisions. However, microstimulation does not allow identification and quantification of the stimulated cellular elements. The sensory impact of individual cortical neurons therefore remains unknown. Here we show that stimulation of single neurons in somatosensory cortex affects behavioural responses in a detection task. We trained rats to respond to microstimulation of barrel cortex at low current intensities. We then initiated short trains of action potentials in single neurons by juxtacellular stimulation. Animals responded significantly more often in single-cell stimulation trials than in catch trials without stimulation. Stimulation effects varied greatly between cells, and on average in 5% of trials a response was induced. Whereas stimulation of putative excitatory neurons led to weak biases towards responding, stimulation of putative inhibitory neurons led to more variable and stronger sensory effects. Reaction times for single-cell stimulation were long and variable. Our results demonstrate that single neuron activity can cause a change in the animal's detection behaviour, suggesting a much sparser cortical code for sensations than previously anticipated.  相似文献   

7.
Bitterman Y  Mukamel R  Malach R  Fried I  Nelken I 《Nature》2008,451(7175):197-201
Just-noticeable differences of physical parameters are often limited by the resolution of the peripheral sensory apparatus. Thus, two-point discrimination in vision is limited by the size of individual photoreceptors. Frequency selectivity is a basic property of neurons in the mammalian auditory pathway. However, just-noticeable differences of frequency are substantially smaller than the bandwidth of the peripheral sensors. Here we report that frequency tuning in single neurons recorded from human auditory cortex in response to random-chord stimuli is far narrower than that typically described in any other mammalian species (besides bats), and substantially exceeds that attributed to the human auditory periphery. Interestingly, simple spectral filter models failed to predict the neuronal responses to natural stimuli, including speech and music. Thus, natural sounds engage additional processing mechanisms beyond the exquisite frequency tuning probed by the random-chord stimuli.  相似文献   

8.
Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depends on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.  相似文献   

9.
Tadin D  Lappin JS  Gilroy LA  Blake R 《Nature》2003,424(6946):312-315
Centre-surround receptive field organization is a ubiquitous property in mammalian visual systems, presumably tailored for extracting image features that are differentially distributed over space. In visual motion, this is evident as antagonistic interactions between centre and surround regions of the receptive fields of many direction-selective neurons in visual cortex. In a series of psychophysical experiments we make the counterintuitive observation that increasing the size of a high-contrast moving pattern renders its direction of motion more difficult to perceive and reduces its effectiveness as an adaptation stimulus. We propose that this is a perceptual correlate of centre-surround antagonism, possibly within a population of neurons in the middle temporal visual area. The spatial antagonism of motion signals observed at high contrast gives way to spatial summation as contrast decreases. Evidently, integration of motion signals over space depends crucially on the visibility of those signals, thereby allowing the visual system to register motion information efficiently and adaptively.  相似文献   

10.
Combined with the fluorescence labeling technique, two-photon microscopy excited with femtosecond pulse laser has become an important tool for neuroscience research. In this research, the calcium signals from neurons in rat cortex slice were monitored by a custom-built two-photon microscopy, and the spontaneous calcium signals and the pharmacological responses as well as the responses to femtosecond pulse laser stimulation were recorded. The results showed that the amplitude of the cal- cium signals increased in direct proportion to the corresponding electrical activities. Glutamate induced a calcium transient, but continuous application resulted in smaller response. Simultaneous monitoring of neuronal populations distinguished the neurons of different microcircuits. The femtosecond pulse laser induced local or global calcium signals in the pyramidal neurons. The approach of interrogation and control of neural activities using femtosecond pulse laser is non-contact, nondestructive, repeatable, and without any additional substrates, which will contribute to the development of neuroscience.  相似文献   

11.
Ecologists have long focused on the coexistence of sympatric species.Here,we investigated two horseshoe bat species,Rhinolophus affinis and Rhinolophus pearsoni inhabited in the same cave,for their foraging strategies,niche differentiation,prey selection,and their coexistence status.These two species of horseshoe bats were ditierent in the dominant frequency of their echolocation calls.but similar in their morphology.We found evidence for prey selectivity although there was a high degree of overlap in prey categories and sizes.R affinis and R pearsoni foraged on 16 and 7 categories insects,respectively,with Pyralidae,Geometridae,Melolonthidae dominating their diets.The degree of trophic niche overlap was 0.69.Pairwise comparisons suggested that there was no obvious differentiation in prey categories and size.However,high prey availability in the environment(Simpson diversity index=0.79 and Margalef richness index=4.121 contributed to their coexistence by dampening the interspecific competition.Since there are one or more mechanisms facilitating species coexistence in a community,our results suggest that the spatial niche differentiation in foraging microhabitats and in foraging habitats at landscape scale may promote the coexistence of the two bat species.However,additional field data are needed to confirm this speculation.  相似文献   

12.
Brain changes in response to nerve damage or cochlear trauma can generate pathological neural activity that is believed to be responsible for many types of chronic pain and tinnitus. Several studies have reported that the severity of chronic pain and tinnitus is correlated with the degree of map reorganization in somatosensory and auditory cortex, respectively. Direct electrical or transcranial magnetic stimulation of sensory cortex can temporarily disrupt these phantom sensations. However, there is as yet no direct evidence for a causal role of plasticity in the generation of pain or tinnitus. Here we report evidence that reversing the brain changes responsible can eliminate the perceptual impairment in an animal model of noise-induced tinnitus. Exposure to intense noise degrades the frequency tuning of auditory cortex neurons and increases cortical synchronization. Repeatedly pairing tones with brief pulses of vagus nerve stimulation completely eliminated the physiological and behavioural correlates of tinnitus in noise-exposed rats. These improvements persisted for weeks after the end of therapy. This method for restoring neural activity to normal may be applicable to a variety of neurological disorders.  相似文献   

13.
Spontaneous and evoked activity of fetal primary afferents in vivo   总被引:2,自引:0,他引:2  
M Fitzgerald 《Nature》1987,326(6113):603-605
The first movements of the fetus are apparently random and spontaneous. Their onset coincides with the growth of dorsal root afferents into the spinal cord and it is possible that they are not simply a result of spontaneous motoneuron activity but are reflex responses to sensory stimulation. It is not clear what stimuli could normally evoke such reflexes because nothing is known of the properties of primary afferent neurons in the fetus. I have investigated this by making recordings from single dorsal root ganglion cells in fetal rats in vivo. The afferents have small, defined receptive fields and respond to mechanical stimulation of skin or muscle at intensities that might occur in utero. Many of them are also chemosensitive. Unlike postnatal afferents they display background activity which peaks at the same age as fetal movements. Repeated stimulation causes long-lasting increases of both background and evoked activity. Such sensory input is likely to have a considerable influence on fetal movements and on the development of spinal cord connections.  相似文献   

14.
Ecologists have long focused on the coexistence of sympatric species. Here, we investigated two horseshoe bat species, Rhinolophus affinis and Rhinolophus pearsoni inhabited in the same cave, for their foraging strategies, niche differentiation, prey selection, and their coexistence status. These two species of horseshoe bats were different in the dominant frequency of their echolocation calls, but similar in their morphology. We found evidence for prey selectivity although there was a high degree of overlap in prey categories and sizes. R. affinis and R. pearsoni foraged on 16 and 7 categories insects, respectively, with Pyralidae, Geometridae, Melolonthidae dominating their diets. The degree of trophic niche overlap was 0.69. Pairwise comparisons suggested that there was no obvious differentiation in prey categories and size. However, high prey availability in the environment (Simpson diversity index = 0.79 and Margalef richness index = 4.12) contributed to their coexistence by dampening the interspecific competition. Since there are one or more mechanisms facil- itating species coexistence in a community, our results suggest that the spatial niche differentiation in foraging rnicrohabitats and in foraging habitats at landscape scale may promote the coexistence of the two bat species. However, additional field data are needed to confirm this speculation.  相似文献   

15.
Paton JJ  Belova MA  Morrison SE  Salzman CD 《Nature》2006,439(7078):865-870
Visual stimuli can acquire positive or negative value through their association with rewards and punishments, a process called reinforcement learning. Although we now know a great deal about how the brain analyses visual information, we know little about how visual representations become linked with values. To study this process, we turned to the amygdala, a brain structure implicated in reinforcement learning. We recorded the activity of individual amygdala neurons in monkeys while abstract images acquired either positive or negative value through conditioning. After monkeys had learned the initial associations, we reversed image value assignments. We examined neural responses in relation to these reversals in order to estimate the relative contribution to neural activity of the sensory properties of images and their conditioned values. Here we show that changes in the values of images modulate neural activity, and that this modulation occurs rapidly enough to account for, and correlates with, monkeys' learning. Furthermore, distinct populations of neurons encode the positive and negative values of visual stimuli. Behavioural and physiological responses to visual stimuli may therefore be based in part on the plastic representation of value provided by the amygdala.  相似文献   

16.
R C Reid  R M Shapley 《Nature》1992,356(6371):716-718
Human colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific (Fig. 1a). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. 1e). Recent work has tended to support the mixed-surround hypothesis. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.  相似文献   

17.
为了对不同神经元进行区分,采用L-Measure软件对神经元的几何形态进行特征提取,通过主成分分析对提取的特征降维进行处理.采用概率神经网络、BP(Back Propagation)神经网络和模糊分类器组成的分类器“投票”,对锥体神经元、普肯野神经元、运动神经元、感觉神经元、双级神经元、三级神经元和多级神经元7种神经元...  相似文献   

18.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

19.
Ecologists have long focused on the coexistence of sympatric species. Here, we investigated two horseshoe bat species, Rhinolophus affinis and R. pearsoni inhabited in the same cave, for their foraging strategies, niche differentiation, prey selection, and their coexistence status. These two species of horseshoe bats were different in the dominant frequency of their echolocation calls but similar in their morphology. We found evidence for prey selectivity although there was a high degree of overlap in prey categories and sizes. R. affinis and R. pearsoni foraged on 16 and 7 categories insects, respectively, with Pyralidae, Geometridae, Melolonthidae dominating their diets. The degree of trophic niche overlap was 0.69. Pairwise comparisons suggested that there was no obvious differentiation in prey categories and size. However, high prey availability in the environment (Simpson diversity index = 0.79 and Margalef richness index = 4.12) contributed to their coexistence by dampening the interspecific competition. Since there are one or more mechanisms facilitating species coexistence in a community, our results suggest that the spatial niche differentiation in foraging microhabitats and in foraging habitats at landscape scale may promote the coexistence of the two bat species. However, additional field data are needed to confirm this speculation.  相似文献   

20.
Sommer MA  Wurtz RH 《Nature》2006,444(7117):374-377
Each of our movements activates our own sensory receptors, and therefore keeping track of self-movement is a necessary part of analysing sensory input. One way in which the brain keeps track of self-movement is by monitoring an internal copy, or corollary discharge, of motor commands. This concept could explain why we perceive a stable visual world despite our frequent quick, or saccadic, eye movements: corollary discharge about each saccade would permit the visual system to ignore saccade-induced visual changes. The critical missing link has been the connection between corollary discharge and visual processing. Here we show that such a link is formed by a corollary discharge from the thalamus that targets the frontal cortex. In the thalamus, neurons in the mediodorsal nucleus relay a corollary discharge of saccades from the midbrain superior colliculus to the cortical frontal eye field. In the frontal eye field, neurons use corollary discharge to shift their visual receptive fields spatially before saccades. We tested the hypothesis that these two components-a pathway for corollary discharge and neurons with shifting receptive fields-form a circuit in which the corollary discharge drives the shift. First we showed that the known spatial and temporal properties of the corollary discharge predict the dynamic changes in spatial visual processing of cortical neurons when saccades are made. Then we moved from this correlation to causation by isolating single cortical neurons and showing that their spatial visual processing is impaired when corollary discharge from the thalamus is interrupted. Thus the visual processing of frontal neurons is spatiotemporally matched with, and functionally dependent on, corollary discharge input from the thalamus. These experiments establish the first link between corollary discharge and visual processing, delineate a brain circuit that is well suited for mediating visual stability, and provide a framework for studying corollary discharge in other sensory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号