共查询到19条相似文献,搜索用时 62 毫秒
1.
提出了利用Mahalanobis距离进行人脸表情识别的方法.首先将待分类的图像样本集进行坐标变换,使得变换以后类间离散度尽可能大而类内离散度尽可能小,即使变换以后的Fisher准则函数取得极大值,在新的坐标下求每个待分类样本到各类均值向量的Mahalanobis距离,从而将待分类的样本归到Mahalanobis距离最小的类中去,通过实验得到了平均80.25%的识别率. 相似文献
2.
以人脸表情视频序列为研究对象,介绍了人脸表情识别的一般过程,给出了基于SVM的人脸表情识别方法,讨论了面部表情强度度量方法。通过分析人脸表情的变化,在L-K光流算法基础上应用修正的特征点跟踪方法提取面部特征信息,使用SVM建立人脸表情模型和强度模型,进行表情识别,并对高兴表情进行强度等级分类。实验结果证明了提出方法的有效性。 相似文献
3.
嵌入式语音识别Mahalanobis距离计算模块 总被引:1,自引:0,他引:1
为了达到嵌入式语音识别系统低成本、低功耗的目标,提出一种算法硬件映射方法.将基于连续隐含Markov模型语音识别算法中占系统总运算量的50%以上的Mahalanobis距离计算,映射为硬件实现的模块.通过该方法,系统在较低时钟频率下即可完成嵌入式语音识别中实时处理的要求,从而大大降低系统功耗.实验结果表明,该模块在0.18 μm 和舰工艺库下实现,仅需1.2 mm2, 包含64 kb 静态随机存储器.应用该模块可以大大提高嵌入式语音识别系统的性能,达到降低成本,降低功耗的目标. 相似文献
4.
5.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。 相似文献
6.
7.
8.
提出基于多特征集成分类器的人脸表情识别新算法。新算法首先对预处理后的人脸表情图像通过3种不同的特征提取方法来提取不同类型的表情特征,然后对不同特征构造不同的分类器,最后构造一个基于神经网络的集成分类器模型,对这3个分类器的输出进行决策融合,从而实现人脸表情的最终识别。在JAFFE人脸表情数据库中的试验结果表明,所提算法的识别效果优于单个特征和单一的分类器。 相似文献
9.
人脸表情识别一直是计算机视觉领域的一个难题.近年来,随着深度学习的飞速发展,一些基于卷积神经网络的方法大大提高了人脸表情识别的准确率,但未能充分利用人脸图像中的信息,这是由于对于面部表情识别有意义的特征主要集中在一些关键位置,例如眼睛、鼻子和嘴巴等区域,因此在特征提取时增加这些关键位置的权重可以改善表情识别的效果.为此... 相似文献
10.
11.
抽取最优鉴别特征是手指静脉识别中重要的一步,在提取小样本的高维手指静脉图像特征时,由于光照、温湿度、水平位移等因素的影响使得采集的静脉图像是非线性分布的,为此,提出了一种基于核Fisher鉴别分析(kernel Fisher discriminant analysis,KFDA)提取非线性特征的方法.该方法是利用一个核映射将原始输入空间变换到一个更低维的空间RN中,在此特征空间上用核类间散度阵和核类内散度阵作为Fisher线性判别准则(Fisher linear discriminant,FLD),来得到最佳非线性鉴别特征,根据此鉴别特征计算其相互间的欧式距离进行识别.实验结果表明,核Fish 相似文献
12.
基于改进的并行特征融合人脸表情识别 总被引:2,自引:1,他引:1
基于信息融合理论和线性鉴别分析,提出了一种改进的并行特征融合人脸表情识别方法.该方法首先将不同表征下的人脸表情特征利用复向量组合起来,构成复特征向量,然后利用具有不同权重的最大散度差鉴别分析方法进行进一步的复特征提取.在不同样本库、不同类型特征融合下的实验结果表明,该方法在优化投影轴和避免"小样本"问题的同时得到了满意的识别结果. 相似文献
13.
提出一种改进的最大互信息(MMI)准则函数并把它应用于隐马尔可夫模型(HMM)的参数估计,重新推导了HMM的迭代公式. 该准则函数相对于原来准则函数定义更为合理,能有效利用训练样本集中的鉴别信息,使得训练数据得到充分利用,提高了HMM的性能. 把这种改进的HMM算法应用于面部表情识别,利用改进的光流算法提取面部表情特征向量序列,并利用改进HMM算法和BP神经网络构建了面部表情混合分类器. 实验结果表明了该方法能有效提高面部表情识别率,有效解决HMM参数估计问题. 相似文献
14.
研究了基于偶对约束的半监督模糊聚类,将马氏距离引入到半监督模糊聚类SCAPC(semi-supervised fuzzy clustering algorithm with pairwise constraints)中,获得了一种新的半监督模糊聚类目标函数,通过求解优化问题,提出了一种基于偶对约束和马氏距离的半监督模糊聚类算法M-SCAPC(Modified-SCAPC).针对选择的标准数据集和人工数据集,对提出的算法M-SCAPC进行了实验研究,并与FCM(fuzzy C-means)、AFCC(active fuzzy constrained clustering)和SCAPC算法的聚类性能进行了比较,表明了提出的算法M-SCAPC在收敛速度和正确率方面的有效性. 相似文献
15.
针对人脸表情识别领域受噪声和遮挡等因素影响识别率不高的问题,结合局部和全局特征,提出一种基于面部表情的情感分析混合方法.首先,通过将梯度直方图(HOG)与复合局部三元模式(C-LTP)融合来进行特征提取;其次,将HOG和C-LTP提取的特征融合到单个特征向量中;最后,采用多类支持向量机分类器把特征向量进行情感分类;最后... 相似文献
16.
矩在面部表情识别中的应用 总被引:3,自引:0,他引:3
将Zernike矩和小波矩运用于面部表情识别问题,分别计算了面部图像的Hu矩、Zernike矩、Haar矩、Shannon矩和B样条矩,以模式识别中常用的类间距作为依据,提取了面部图像的各种矩的最好特征和次好特征,并对Zernike矩和B样条矩的识别能力和抗噪性进行了比较.实验证明:用Zernike矩作为面部表情特征,其识别率在特征数取5个时能达到95%,B样条矩在特征数取2个以上时识别率能达到100%. 相似文献
17.
介绍了面部表情识别的主要步骤,在此基础上提出了一种多姿态多状态的面部情绪模型.该系统利用图像质量的评价结果来决定面部检测的方法,通过中性脸的检测来实现表情边界的分割,从而把提取的表情运动特征参数作为BP神经网络的输入,进而实现面部表情的识别.实验表明,该系统具有很好的识别效果. 相似文献
18.
针对姿态和表情变化对3D人脸识别影响较大的问题,提出一种基于面部表情通用弹性模型(generic elastic models,GEM)和稀疏立方矩阵的3D人脸识别方法.利用面部表情通用弹性模型构造3D人脸数据库,3D重建模型为所有人脸姿态创建稀疏立方矩阵(sparse cubic matrix,SCM),并利用自动头部姿态估计法获得人脸图像中三元组角度的初始估计值;为每个子集估计的三元组角度选择SCM的阵列;通过稀疏表示从SCM中选择阵列与探针图像.在FERET,CMU PIE和LFW数据库上的实验验证了提出方法的有效性.与几种优秀3D人脸识别方法相比,提出的方法识别率更高,当姿态变化角度较大时尤为明显.此外,对于480×640图像,LFW数据库上,预处理、人脸检测和分类的总平均处理时间仅为89.4 ms. 相似文献
19.
为了提高面部表情识别的精确度,提出了一种基于数据增强策略面部表情识别,区别于普通的在线随机数据增强,将实验用到的训练数据集采用附加不同的权重分配策略进行增强数据,并随机生成每次训练时的权重,保证其训练数据的多样性并通过比较实验结果得出哪种权重的分布策略适用于面部表情识别数据集的增强,同时解决了面部表情识别因数据集缺乏多样性识别精度不高等问题,提升了人脸表情识别的准确性和鲁棒性,此外还利用VGG19特征提取网络,通过从数据中学习鲁棒性和区分性特征,来实现高精度的面部表情识别。实验结果表明,使用该方式增强后的数据进行训练的模型在Fer2013和扩展Cohn-Kanade (CK+)数据库上对7种表情的识别率相比其原始数据集均有提升。 相似文献