首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
给出了Cartan不变量C(n)λ,λ′和dimUn(λ)的计算公式,并具体计算了李型有限群SL(3,5n)的第一Cartan不变量C(n)00.  相似文献   

2.
确定有限群的Cartan不变量矩阵是模表示理论中的一个重要研究课题 .利用叶家琛 1982年发表在《数学研究与评论》上的论文《SL(3,pn)的Cartan不变量》的方法 ,给出了 5个元素的有限域F5上李型有限群G2 (5 )的Cartan不变量矩阵  相似文献   

3.
确定Cartan不变量是代数群与相关的李型有限群的模表示理论中的一个重要方面. 作者利用代数群模表示理论中的一系列结果, 计算了3^n个元素的有限域上特殊线性群 SL(3,3^n) 和特殊酉群 SU(3, 3^n) 的第一Cartan不变量, 得到如下结论: 当 G=SL(3, 3^n) 时, C_{00}^{(n)}= a^{n}+b^{n}+6^{n}-2\cdot 8^{n};而当 G=SU(3, 3^n) 时, C_{00}^{(n)}= a^{n}+b^{n}+6^{n}-2\cdot 8^{n}+2\cdot\left(1+(-1)^{n}\right),$$ 其中 $a,b$ 是多项式 $x^{2}-20x+48$ 的两个根. 另外, 作者也得到了射影不可分解模 $U_n(0,0)$ 的维数公式: $$ \dim U_n(0,0)=(12^n-6^n+\epsilon)\cdot3^{3n},$$ 其中, 当 $G=SL(3, 3^n)$ 时, $\epsilon=1$; 而当 $G=SU(3, 3^n)$ 时,$\epsilon=-1$.  相似文献   

4.
李型有限群G2(5)的Cartan不变量矩阵   总被引:1,自引:0,他引:1  
确定有限群的Cartan不变量矩阵是模表示理论中的一个重要研究课题。利用叶家琛1982的发表在《数学研究与评论》上的论文《SL(3,p^n)的Cartan不变量》的方法,给出了5个元素的有限域F5上李型有限群G2(5)的Cartan不变量矩阵。  相似文献   

5.
计算B2=C2型有限辛群Sp(4,13)的Cartan不变量矩阵C=(cλ(1μ))λ,μ∈X1(T).  相似文献   

6.
设K是特征数p>0的代数闭域,G是K上G_2型单连通半单代数群,G(n)是p~n个元素的有限域Fp~n上与G同型的Chevalley群.本文主要结果:当p≥13时,p个元素的有限域FP上G_2型Chevalley群的第一Cartan不变量C_(11)=224.  相似文献   

7.
一般性地计算了p≥7时李型有限群SL(3,pn)的第一Cartan不变量C(n)00以及射影不可分解模Un(0)的维数dimUn(0)。  相似文献   

8.
9.
本文利用Chaskofsky-Jantzen公式,给出了一个用计算机计算Cartan不变量的方法。作为例子,具体算出了SL(4,2)和SL(4,4)的Cartan矩阵。  相似文献   

10.
确定出A2型有限群G(1)=SL(3,11)的Caftan不变量矩阵C=(c^(1)λμ)λ,μ∈X1(T),利用MATLAB软件计算C的行列式的值是11^12,与Brauer理论所指出的结果一致.  相似文献   

11.
12.
构造了~Cartan~型李代数$W(n;\mathbf{m})$的 一类~Borel~子代数$\Phi(n;\mathbf{m}),$其中$n$是一个正整数, 且$\mathbf{m}=(m_{1},\cdots,m_{n})$是一个$n$-\!元正整数数组. 确定了$\Phi(n;\mathbf{m})$的导子代数. 特别地, $\Phi(n;\mathbf{1})$是一个~Cartan~型完备阶化李代数, 它不同于任何典型完备李代数.  相似文献   

13.
给出了G=Sp(4,K)时WEYL模的分解模式,给出了Sp(4,K)的WEYL模分解。  相似文献   

14.
利用广义限制李代数的概念和性质,研究Cartan型李代数L=X(m,n)(X=W,S,H)的不可约表示,给出了特征标高度h(2≤h相似文献   

15.
确定出13个元素的有限域F13上A2型Chevalley群G(1)=SL(3,13)的Cartan不变量矩阵C=(c(1)λμ)λ,μ∈X1(T),利用MATLAB软件计算C的行列式的值是1318,符合Brauer的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号