共查询到20条相似文献,搜索用时 0 毫秒
1.
本文提出一种纠错式主动学习成对约束的方法,探讨了主动学习的停止条件,在较少的约束下可得到较好的聚类结果.通过在UCI基准数据集以及人工数据集的实验表明,在该学习策略下,半监督聚类算法的性能好于对比算法;在停止条件下,每个数据集的聚类结果都是可接受的. 相似文献
2.
聚类通常被认为是一种无监督的数据分析方法,在聚类搜索过程中充分利用先验信息会显著提高聚类算法的性能。本文通过成对约束来调整点与点之间的相似矩阵,然后对其优化,并结合谱聚类算法,得到一种很有效的聚类算法——基于成对约束的半监督谱聚类算法(SSCA)。实验表明,该算法有很好的聚类效果。 相似文献
3.
提出了一种混合约束的半监督聚类算法HCSCAP,综合考虑了已标号点和成对点约束信息,使2类先验信息在聚类的过程中能发挥各自的作用.通过调整相似性矩阵添加成对点约束,已标号点以宏结点的方式添加到相似性矩阵.给出了具体的算法步骤并进行了测试,实验表明:HCSCAP比只利用成对点约束信息的SAP算法和只利用标号点的SS-CA... 相似文献
4.
针对半监督聚类算法中监督信息使用不充分,监督信息中信息含有量低的问题,提出一种结合主动学习的半监督聚类算法.首先结合使用数据的类别标记和成对约束信息,指导Kmeans聚类过程,设计出一种基于Seeds集和成对约束的半监督聚类算法SC-Kmeans;其次将主动学习算法引入到SC-Kmeans中,以尽量小的代价选取信息含有量更高的监督信息,提高SC-Kmeans算法的聚类精度;最后在UCI标准数据集上进行仿真实验.实验结果表明,该算法取得了较好的聚类效果,有效提高了聚类准确率. 相似文献
5.
6.
半监督聚类通过利用少量有标号样本或成对约束等监督信息来提高聚类性能.在此提出一种新颖的基于半监督降维的聚类算法,首先用半监督降维方法对原始数据进行降维,然后在降维后的空间中进行半监督聚类.由于在降维和聚类两个阶段中都利用了监督信息,从而使得算法的聚类性能得到进一步提升.在UCI标准数据集、yale人脸库以及文本数据集上的实验结果验证了该算法的有效性. 相似文献
7.
在半监督聚类算法中,通常利用有标签样本的指导来提高数据的聚类效果,但不同样本对聚类结果的重要性并未充分考虑。为了解决这一问题,该文提出了一种基于自步学习的自适应半监督聚类算法(ASSCSPL)。首先,在模型中引入自适应损失函数,可以通过调节自适应损失参数提高模型的鲁棒性;其次,在模型中引入自步学习机制,用来刻画不同样本对聚类结果的不同重要程度;最后,在标签传播阶段,所得算法能够很好地利用已有的监督信息,为无标签数据赋予相应的标签权重。数据实验表明,与现有优秀算法比较,所提算法可以达到更好的聚类效果。此外,实验结果也表明,所提算法能够有效地降低噪声对模型聚类性能的影响。 相似文献
8.
研究了基于偶对约束的半监督模糊聚类,将马氏距离引入到半监督模糊聚类SCAPC(semi-supervised fuzzy clustering algorithm with pairwise constraints)中,获得了一种新的半监督模糊聚类目标函数,通过求解优化问题,提出了一种基于偶对约束和马氏距离的半监督模糊聚类算法M-SCAPC(Modified-SCAPC).针对选择的标准数据集和人工数据集,对提出的算法M-SCAPC进行了实验研究,并与FCM(fuzzy C-means)、AFCC(active fuzzy constrained clustering)和SCAPC算法的聚类性能进行了比较,表明了提出的算法M-SCAPC在收敛速度和正确率方面的有效性. 相似文献
9.
10.
针对伪相关反馈模型反馈文档信息质量差和扩展词选择不适产生的漂移现象等问题,提出了一种基于约束的半监督聚类查询扩展方法。该方法对初检结果的前k个文档进行人工标注,分成相关文档与不相关文档两类;并利用一种半监督聚类算法对初检结果的前”个文档进行分析,提取出与查询相关的文档作为反馈文档。该方法通过对少量标注文档与查询相关性的学习,能够较准确地估计出大量未知文档与查询的相关性,提高反馈文档的质量,从而有效提高检索的查全率和查准率。实验结果表明,该方法比传统的伪相关反馈和基于无监督聚类的伪相关反馈有更优的检索性能。 相似文献
11.
文中提出一种半监督核信任力传播聚类算法(SSKAPC).SSKAPC在对样本聚类的过程中,引入先验知识提高聚类性能;同时该算法将样本映射到高维空间进行聚类.人工数据和真实世界数据的实验表明,SSKAPC算法能大幅度提高聚类的准确性. 相似文献
12.
李小展 《东莞理工学院学报》2011,18(1):29-32
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集... 相似文献
13.
利用少量的标记数据和约束辅助聚类过程,提出一种基于半监督聚类的入侵检测模型.实验结果表明,与基于监督和非监督学习的入侵检测算法相比,基于半监督聚类的入侵检测算法可以更加有效地检测出未知攻击. 相似文献
14.
通过将半监督学习的思想引入到模糊C-均值聚类方法中,提出一种基于半监督的模糊C-均值聚类算法,有效解决了模糊C-均值聚类算法随机选取初始聚类中心导致聚类结果局部收敛的问题,能客观获取最佳聚类数目和初始聚类中心.实验结果表明,与传统模糊C-均值聚类算法相比,基于半监督的模糊C-均值算法在一定程度上减少了迭代次数,降低了对初始聚类中心的依赖性. 相似文献
15.
为克服k-means算法难以探测出一些局部分布稀疏不均、聚类区域的形状与大小不规整数据点集的聚类分布结构这个缺点,在半监督学习思想的指导下,针对混合属性空间区域中具有同一分布性质的带有类别标记的小样本数据集和无类别标记的大样本数据集,提出了一种基于半监督学习的k平均聚类框架。仿真实验表明:该框架经常能取得比k-means更好的聚类精度,从而说明这个半监督学习框架具有一定的有效性。 相似文献
16.
针对现有入侵检测技术的不足,对基于机器学习的异常入侵检测系统进行了研究,提出了一种基于半监督聚类的异常入侵检测算法。此算法通过利用少量的标记样本,生成用于初始化算法的种子聚类,然后辅助聚类过程,对数据进行检测。实验表明,与以往入侵检测算法相比,此算法可以明显地改善入侵检测系统的性能。 相似文献
17.
谱聚类算法受到相似矩阵的影响以及没有使用先验信息,使得聚类结果有很大的局限性.针对这一问题,提出了一种基于L2,1范数和流形正则项的半监督谱聚类算法.一方面借助L2,1范数的鲁棒性学习到合理的相似矩阵;另一方面充分利用监督信息,不仅指导了初始相似矩阵的构造,而且引入流形正则项去调整模型,从而改善聚类效果.实验结果表明,... 相似文献
18.
传统的聚类算法用在MQAM(multilevel quadrature amplitude modulation,多进制正交幅度调制)信号的调制识别中,算法的迭代次数多,特别对高阶调制信号运算时间长。针对此问题,提出了一种半监督聚类重构星座图的方法,由自适应减法聚类确定初始聚类中心,在其周围标记部分样本点并赋予初始隶属度值fik,根据标记的样本点数目确定可信度参数α的值。用fik和α来监督隶属度和聚类中心的更新,误差平方和函数迭代次数减少1/2。接收端识别时,提出基于星座图圆半径的调制识别方式,该方法能很好应对初始聚类中心数目不准确的情况,不需要进行聚类中心的合并与分裂。通过提取接收端星座图的特征参数R并与标准参数Rs进行比较,实现对MQAM信号调制方式的识别。仿真结果表明运算时间是传统聚类算法的1/3,对4~256QAM信号的调制方式识别率在93%以上。 相似文献
19.
通过将类间分离度函数引入到模糊C-均值聚类算法中,结合半监督的思想,建立基于信息熵的半监督模糊C-均值聚类模型,并对该模型的求解过程进行推导,提出一种新的算法.为了验证算法的有效性,将该算法在UCI数据集上进行实验,实验结果表明,该算法比仅引入信息熵的模糊C-均值聚类方法聚类性能更好. 相似文献
20.
聚类是机器学习和数据挖掘中的重要课题。近年来,深度神经网络(Deep Neural Networks,DNN)在各种聚类任务中受到广泛关注。特别是半监督聚类,在大量无监督数据中仅引入少量先验信息即可显著提高聚类性能。然而,这些聚类方法忽略了定义的聚类损失可能破坏特征空间,从而导致非代表性的无意义特征。针对现有半监督深度聚类的特征学习过程中局部结构保持有所欠缺的问题,本文提出一种改进的半监督深度嵌入聚类(Improved Semi-supervised Deep Embedded Clustering,ISDEC)算法,采用欠完备自动编码器在特征表达学习的同时,保持数据的内在局部结构;通过综合聚类损失、成对约束损失和重构损失,对聚类标签分配和特征表达进行联合优化。在包括基因数据在内的若干高维数据集上的实验结果表明,本方法的聚类性能比现有方法更好。 相似文献