首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
为使轴承故障诊断工作更加准确与智能化,构建了一种基于Inception结构和残差结构的卷积神经网络(CNN:Convolutional Neural Network),提出一种新的轴承故障诊断方法。首先使用短时傅里叶变换(STFT:Short Time Fourier Transform)将滚动轴承原始一维信号转变为二维时频图,分为训练集、验证集和测试集;然后使用训练集对搭建的Inception-残差网络模型进行迭代,不断更新网络参数,并由验证集检验模型是否出现过拟合现象;最后将训练好的模型应用于测试集,并通过输出层的分类器输出诊断结果。最终由实验证明所提方法的可行性,对轴承故障分类的平均准确率到达了99.98%±0.02%,相对于其他方法具有较高的准确率和稳定性。  相似文献   

2.
由于沙漠地震信号中含有较强的随机噪声,从而给沙漠地震数据的处理和解释带来了很大的困难。针对上述问题,提出了一种基于Shearlet 变换的深度残差卷积神经网络( ST-CNN: Deep Residual Convolutional NeuralNetwork for Shearlet Transform) 模型,实现沙漠地震信号的随机噪声压制。在训练阶段,将沙漠地震信号经Shearlet 分解后的系数作为输入,将随机噪声经Shearlet 分解后的系数作为标签,通过卷积神经网络( CNN: Convolutional Neural Network) 学习输入和标签之间的映射关系; 在测试阶段,利用此映射关系即可从沙漠地震信号系数中预测出噪声系数,并间接地获得有效信号系数,最后通过Shearlet 反变换获得有效信号。通过与传统的Shearlet 硬阈值去噪算法对比,发现该算法可把沙漠地震信号的信噪比从- 4. 48 dB 提高到14. 15 dB,具有更好的去噪效果。  相似文献   

3.
目前,大多数的故障检测都是针对故障发生时的这一段时间来进行检测的。当这种方法被用于检测多种故障类型时,其准确性往往会下降。针对上述问题的多故障、长时间序列的油井电参数信号,提出了一种基于深度残差收缩网络(DRSN)模型的故障诊断方法。首先,将采集到的油井长时间序列的电参数信号,按照一定尺寸将其矩阵化。其次,通过将深度残差收缩网络模型应用于故障诊断中,首先是将残差项加入到CNN中解决深度网络的模型退化问题,再通过软阈值化进行样本降噪。最后,为了验证所提方法的有效性,将采集到油井时间序列的数据用于改模型中用于故障诊断。实验结果表明:通过验证该文所提的方法有效性和可行性,表明该诊断方法在油井的故障诊断中有较好的表现和远大前景。  相似文献   

4.
通过实验研究提出一种基于残差网络(ResNet)的锈蚀钢筋分类方法,为开发锈蚀钢筋现场准确定量评价方法提供新思路和技术参考.以1478根直径12mm和14mm,锈蚀率1.45%~56.10%的钢筋为研究对象,利用工业相机在实验室条件下拍摄图像,结合数据增强技术,共获得23648张样本图像,并根据锈蚀率确定11类标签.基于深度卷积神经网络搭建ResNet结构,并利用Adam算法进行迭代优化,通过对比不同数据集的实验结果评估分类准确率和训练轮数.为验证所提方法的适用性,将不同直径钢筋的样本图像组合成6种数据集进行训练与测试.研究表明,经过100次迭代训练,针对6种数据集的钢筋锈蚀程度分类准确率均在93.2%以上,最高达98.8%.该方法支持混合直径的锈蚀钢筋高精度分类,具有良好的实际应用性.  相似文献   

5.
针对现实生活中垃圾分类知识普及不够,许多城市和学校都面临着垃圾分类困难的问题,利用神经网络对分类问题的高效性和准确性,通过一种基于ResNet网络和SENet网络的深度残差收缩网络实现垃圾图像分类。通过对Garbage数据集进行筛选得到实验所需数据集,并对ResNet进行改进,将SENet和软阈值化操作加入ResNet结构中。实验结果表明,该方法通过网络训练和超参数调整,得到了较好的识别率,在校园垃圾分类中获得了较好的识别效果,具有一定可行性。  相似文献   

6.
为了提高癫痫脑电图(EEG)的识别精度,提出一种基于改进残差网络的癫痫脑电自动识别算法。首先对EEG信号进行归一化,然后利用改进的残差模块构建一维深度残差网络,将其用于自主学习EEG的内在特征,最后利用Softmax分类器实现癫痫的自动识别。为了评估模型的性能,采用十折交叉验证对波恩大学的癫痫数据集进行实验。实验结果表明,该算法能够有效识别癫痫EEG类别,具有较高的识别准确率。  相似文献   

7.
为解决噪声背景中轴承故障诊断精度不高的问题,提出了一种新的轴承故障诊断方法。利用连续小波变换将采集到的振动信号转换成小波时频图,采用多尺度膨胀卷积对深度残差收缩网络进行改进,扩大卷积核的感受野,并将交叉熵损失函数改进成加权交叉熵损失函数。实验结果表明,与其他深度学习算法相比,本算法故障诊断的准确率较高。  相似文献   

8.
9.
针对目前的视线估计算法准确度较低的问题,提出一种基于浅层残差网络的算法。利用残差网络结构特点,对图片在不同层次提取到的特征进行融合计算。实验表明,使用基于浅层残差网络结构的算法与使用LeNet-5 结构算法相比,准确率提升了近 8. 5% ,视线估计算法准确度得到了有效的提升。  相似文献   

10.
结合RNN和CNN层次化网络的中文文本情感分类   总被引:1,自引:0,他引:1  
中文情感分类; 深度学习; 卷积神经网络; 循环神经网络  相似文献   

11.
针对磨矿复杂工况下球磨机负荷状态准确诊断的难题,提出一种基于深度宽卷积残差收缩网络(Deep Wide Residual Shrinkage Networks, DWRSNs)的球磨机负荷状态诊断方法.首先采用宽卷积神经网络提取振动信号短时特征,建立三层深度残差收缩网络,利用软阈值函数进行非线性变换,再基于注意力机制模块自主学习阈值提取面向负荷状态的高级特征,通过全连接层、softmax层实现球磨机负荷状态的准确分类与判别.实测结果证明,本文提出的DWRSNs方法的拟合度、收敛速度及学习能力均优于现有DCNNs、ResNets和DRSNs诊断方法,且提取的振动信号特征具有高代表性,经TSNE可视化后簇内紧密度高、簇间分界明显.本文方法诊断测试集的准确率超过99%,交叉熵损失为0.077 2,相较于现有负荷状态诊断方法具有更高的准确率且诊断耗时更短,可实现球磨机负荷状态的准确判别,为选冶磨矿过程优化控制、提高磨矿效率提供有效、可靠的判据.  相似文献   

12.
现有的树叶分类方法的精确率已超过90%,但可分类的树叶种类较为有限.为此,本文提出一种基于残差网络迁移学习的大规模树叶分类方法.首先使用大规模数据集预训练残差网络;然后在保留其他节点参数的基础上,对已预训练好残差网络进行部分结构调整,使之适用于树叶分类;最后,使用树叶数据集对调整后的残差网络进行再训练,以使网络具备树叶...  相似文献   

13.
针对传统卷积神经网络随着深度加深而导致网络退化以及计算量大等问题,提出一种改进残差神经网络的遥感图像场景分类方法。该方法以残差网络ResNet50作为主框架,在残差结构中引入深度可分离卷积和分组卷积,减少了网络的参数量和计算量,加快模型收敛的同时也提升了分类精度。此外在网络中嵌入多尺度SE block模块对通道特征进行重校准,提取出更加重要的特征信息,进一步提升了网络的分类性能。在AID和UCMerced_Land Use两个公开数据集上的分类精度分别为91.92%和93.52%,相比常规残差网络分类精度分别提高了3.38%和10.24%,证明所提方法在遥感图像场景分类任务中的可行性和有效性。  相似文献   

14.
超微光成像可在极度黑暗的环境中给观察者提供近乎白昼的视觉体验,在许多民用和军事应用中起着至关重要的作用。超微光环境下拍摄的图像和视频通常存在亮度与对比度极低、噪声水平高、场景细节和色彩严重缺失等固有缺陷,近年来,深度学习为超微光成像的研究带来了新的机遇。文中采集并提供了一组实用性更强的超微光训练数据集,提出了一种多残差注意力深度收缩网络(Multi Residual Attention Shrinkage Network),以此实现了一种新的超微光成像方法。通过成功研制的小型化样机证实了该方法的工业量产前景。实现了基于通道注意力和空间注意力的残差内注意力机制,以及基于深度软阈值收缩的外注意力机制,不仅可以有效提取并还原极低照度环境下的图像细节信息,恢复场景真实色彩,而且可以有效去除此类环境下由成像设备感光不足带来的巨量噪声。实测效果显示该方法可对极低照度环境进行有效的增强且实时性高。通过与多种业界最新方法比较,文中方法在主观视觉体验以及客观参数两方面均表现更好。  相似文献   

15.
传统的卷积神经网络(Convolutional Neural Network, CNN)的预测结果错误率不可控并且不具备置信度衡量,当面对高风险低容错率的问题时,这种方法的预测结果可靠性低.针对这个缺点,基于归纳一致性预测提出一种错误率可控的图像分类算法.该算法通过训练更小的训练集有效缩短了卷积神经网络的训练时间,并根据奇异值函数衡量测试样本与各个类别之间的一致性程度,使得输出结果具有极高的可靠性.实验结果表明,提出的算法能够有效地控制神经网络的预测准确率,并且能够提供具有可靠置信度的预测集合.  相似文献   

16.
卷积算子是卷积神经网络的核心构造块,它根据一定的感受视野,融合卷积神经网络各层与不同通道之间的信息,提取出原始图像特征.然而图像中的相邻像素往往具有相似的值,导致卷积层的输出包含大量冗余信息.为了减少冗余信息,加快模型推理速度,神经网络中会加入池化层进行信息降维.对比传统降维方法,池化本身具有平移和旋转不变性,对图像特...  相似文献   

17.
为解决现有图像修复算法因缺乏上下文信息和有效的感受野导致修复大面积随机破损时效果差且只能修复低分辨率图像的缺陷,提出了基于残差变换器的并行傅里叶卷积修复算法.首先,提出基于变换器的改进残差网络模块提取待修复图像的纹理特征;然后,设计并行快速傅里叶卷积模块增强损失图像的高度有效感受野捕捉结构信息;最后,提出门控双特征融合模块交换和结合图像的结构与纹理分量,融合上下文特征,改善生成纹理的细粒度.在两个公开数据集上进行定性和定量实验,实验结果表明:所提算法可有效修复结构复杂且纹理精细的随机不规则大面积破损区域,生成结构合理、纹理细腻和语义丰富的高保真图像,并能用于高分辨率图像的目标移除.  相似文献   

18.
对无线电信号分类的相关技术进行了研究,提出一种新的基于残差神经网络和群卷积神经网络的深度学习网络来实现无线电的分类.该神经网络基于同相分量信号和正交分量信号组成的样本进行训练,实验结果显示,在10 dB时对24种信号的分类准确率达到了95.69%,揭示了该网络架构的有效性与实用性.  相似文献   

19.
首先, 以世界海洋地图集2013(WOA13)海洋数据为实验数据, 提出将不等距微分法、 垂直梯度法应用于海洋数据预处理、 海洋区域划分和跃层分析中, 并通过对多种神经网络在基于WOA13海洋三维数据二分类实验的性能分析, 选取残差网络作为二分类实验的网络模型, 在三层残差网络模型基础上增加了Dropout保留层以防止过拟合. 其次, 将残差网络模型用于温跃层分析判定, 并针对改进模型进行超参数优化、 残差单元改进、 保留率调整等对比实验. 实验结果表明, 改进的ResNet 26网络对WOA13海洋区域数据的温跃层数据分类有效, 分类准确率超过94%.  相似文献   

20.
首先, 以世界海洋地图集2013(WOA13)海洋数据为实验数据, 提出将不等距微分法、 垂直梯度法应用于海洋数据预处理、 海洋区域划分和跃层分析中, 并通过对多种神经网络在基于WOA13海洋三维数据二分类实验的性能分析, 选取残差网络作为二分类实验的网络模型, 在三层残差网络模型基础上增加了Dropout保留层以防止过拟合. 其次, 将残差网络模型用于温跃层分析判定, 并针对改进模型进行超参数优化、 残差单元改进、 保留率调整等对比实验. 实验结果表明, 改进的ResNet 26网络对WOA13海洋区域数据的温跃层数据分类有效, 分类准确率超过94%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号