首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
讨论了线性方程Ax=b的Gauss-Seidel迭代法的求解问题.2003年,A.Hadjidimos等提出了预条件矩阵I Cα.该文证明了若系数矩阵A是H矩阵,则(I Cα)A是H矩阵.并给出两个数值例子作以说明.  相似文献   

2.
文章考虑具有更优特性的分块矩阵,(具有性质A的矩阵),给出了预条件Jacobi、Gauss—Seidel、对称Gauss—Seidel迭代矩阵与传统块Jacobi迭代矩阵二者特征值之间的关系,作为应用,选取某个恰当的预条件因子,在传统块Jacobi迭代法不收敛的情况下,预条件块迭代法能收敛.  相似文献   

3.
在1991年A.D.Gunawardena等人首先提出了以I+S为预处理子的Gauss-Seidel型迭代法比基本的迭代法有较好的收敛性.文章提出以阶梯矩阵作预处理子的Gauss-Seidel型迭代法,文中给出了收敛定理并以数值例子说明文章的方法比基本的迭代法及A.D.Gunawardena等人的方法有较好的收敛率.  相似文献   

4.
H-矩阵是一类用途比较广泛的矩阵,为了解决H-矩阵线性系统,给出了两类新的不同预条件AOR迭代法,得到了这两类预条件AOR迭代法的收敛结果.最后用数值例子验证得到的结果是正确的.  相似文献   

5.
提出了线性方程组Ax=b的两种新预条件因子,并把它们运用到修正Gauss-seidel方法(MGS)上,并从理论上证明了对MGS迭代法而言,新的预条件因子优于已知的预条件因子,文中所得收敛性比较定理推广了已有结果.最后用数值例子充分验证定理的正确性和算法的有效性.  相似文献   

6.
提出了预条件矩阵I+Cα,并利用此矩阵讨论了H-矩阵方程组的预条件Gauss-Seidel迭代法的收敛性。一些谱半径的比较结果也被给出。  相似文献   

7.
给出了H-矩阵的预条件AOR迭代法及其收敛性,并给出了松驰因子与加速因子的选取对收敛速度的影响,同时通过数值实例验证了主要结果.  相似文献   

8.
 给出了解线性方程组Ax=b的一类新的预条件迭代法,并证明了其收敛性.数值例子表明,所给方法比经典的Gauss-Seidel方法收敛速度快.  相似文献   

9.
对预条件方法解线性方程组,利用黄廷祝等在["modified SOR-type iterative method for z-matri-ces"]中提到的预条件能加速SOR迭代法的收敛性,结合矩阵分裂理论及比较定理,给出一种基于矩阵分裂的含参数预条件SOR迭代方法,说明这种方法不仅能加速SOR迭代法的收敛性,而且优于一般的预条件方法,找出参数的最优选取方法,最后通过数值例子加以说明.  相似文献   

10.
在预条件矩阵Pα=(I+Sα)和Pαβ=(I+Sαβ)的基础上提出一个新的预条件矩阵为P^αβ=(I+S^αβ)的预条件AOR迭代法,建立了新的预条件AOR迭代法与经典的AOR迭代法的比较定理,数值试验表明预条件AOR迭代法更为有效.  相似文献   

11.
将求解二维椭圆方程边值问题的拟多重网格预处理迭代法推广到二维抛物型方程中去,采用Crank—Nicolson格式来离散二维抛物型方程.由于网格节点顺序对迭代格式的构造至关重要,因此对每一时间层上的Z层网格节点按照旋转红一黑序进行排序.数值试验表明,此方法迭代次数较SOR法有明显减少,迭代解与精确解的误差值相对较低,收敛速度较快.因此,在求解二维抛物型方程初边值问题中拟多重网格预处理迭代法是一种很有效的方法.  相似文献   

12.
针对二维椭圆型方程的数值求解问题,结合多重网格法和预处理方法的优点,构造出了一种求解二维椭圆型方程边值问题的迭代方法.数值结果表明,该方法能够有效地提高迭代法的收敛速度,迭代计算得到的数值解逼近精确解的精度高且稳定,较SOR方法有显著的优越性,是数值求解二维椭圆型方程边值问题的一种可靠、高效的方法.  相似文献   

13.
Chebyshev半迭代的预处理法   总被引:1,自引:0,他引:1  
在Chebyshev半迭代的基础上建立一种预处理迭代法,经过预处理的迭代算法,其渐近收敛速度有几何级的增长。对任一给定的整数q≥2,在一定条件下,可以通过选择适当的预处理矩阵,使渐近收敛速度由原来的12|lnυ|提高到12|lnυ|q  相似文献   

14.
一种求逆矩阵的迭代方法   总被引:2,自引:1,他引:2  
应用矩阵的初等变换不改变矩阵的秩的理论,将一个可逆矩阵分解为两个向量乘积之和,再运用求(G uvT)-1的公式,建立并给出了求逆矩阵的迭代公式.  相似文献   

15.
将复数矩阵的虚部矩阵应用矩阵的初等变换不改变其秩的理论,分解成两个向量乘积之和分解式.把复数矩阵写成实部矩阵与虚部矩阵分解式之和形式,利用摄动矩阵求逆公式,建立了本文给出的复数矩阵求逆的迭代公式.  相似文献   

16.
将复数矩阵的虚部矩阵应用矩阵的初等变换不改变其秩的理论,分解成两个向量乘积之和分解式。把复数矩阵写成实部矩阵与虚部矩阵分解式之和形式,利用摄动矩阵求逆公式,建立了本文给出的复数矩阵求逆的迭代公式。  相似文献   

17.
利用内外迭代技术,构造了广义绝对值方程的Picard-GPSS迭代法,详细研究了收敛性理论。数值实验结果表明新方法的高效性,并且该方法在内迭代步数和CPU时间上均优于Picard-HSS迭代法。  相似文献   

18.
研究半线性热方程的能控性.给出了一种基于Picard迭代的证法: 构造一控制序列和解序列,使其极限为原控制问题的解.用此法改进了文献中的结果.  相似文献   

19.
针对系数矩阵为大型非Hermitian正定/半正定稀疏矩阵的连续Sylvester方程组,提出了预处理不对称的埃尔米特和反埃尔米特分裂(PAHSS)迭代方法,并对所提算法进行了收敛性分析,讨论了PAHSS方法的准最优参数.为了进一步减少计算量,在内迭代求解子线性方程组时,基于该子线性系统具有特殊结构,采用某种有效的迭代方法去求解,得到了不精确的PAHSS迭代方法,并分析了其收敛性.数值实验验证了所提算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号