首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.  相似文献   

2.
Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism   总被引:16,自引:0,他引:16  
Cherubism (MIM 118400) is an autosomal dominant inherited syndrome characterized by excessive bone degradation of the upper and lower jaws followed by development of fibrous tissue masses, which causes a characteristic facial swelling. Here we describe seven mutations in the SH3-binding protein SH3BP2 (MIM 602104) on chromosome 4p16.3 that cause cherubism.  相似文献   

3.
X-linked forms of mental retardation (XLMR) include a variety of different disorders and may account for up to 25% of all inherited cases of mental retardation. So far, seven X-chromosomal genes mutated in nonspecific mental retardation (MRX) have been identified: FMR2, GDI1, RPS6KA3, IL1RAPL, TM4SF2, OPHN1 and PAK3 (refs 2-9). The products of the latter two have been implicated in regulation of neural plasticity by controlling the activity of small GTPases of the Rho family. Here we report the identification of a new MRX gene, ARHGEF6 (also known as alphaPIX or Cool-2), encoding a protein with homology to guanine nucleotide exchange factors for Rho GTPases (Rho GEF). Molecular analysis of a reciprocal X/21 translocation in a male with mental retardation showed that this gene in Xq26 was disrupted by the rearrangement. Mutation screening of 119 patients with nonspecific mental retardation revealed a mutation in the first intron of ARHGEF6 (IVS1-11T-->C) in all affected males in a large Dutch family. The mutation resulted in preferential skipping of exon 2, predicting a protein lacking 28 amino acids. ARHGEF6 is the eighth MRX gene identified so far and the third such gene to encode a protein that interacts with Rho GTPases.  相似文献   

4.
5.
X-linked forms of mental retardation (MR) affect approximately 1 in 600 males and are likely to be highly heterogeneous. They can be categorized into syndromic (MRXS) and nonspecific (MRX) forms. In MRX forms, affected patients have no distinctive clinical or biochemical features. At least five MRX genes have been identified by positional cloning, but each accounts for only 0.5%-1.0% of MRX cases. Here we show that the gene TM4SF2 at Xp11.4 is inactivated by the X breakpoint of an X;2 balanced translocation in a patient with MR. Further investigation led to identification of TM4SF2 mutations in 2 of 33 other MRX families. RNA in situ hybridization showed that TM4SF2 is highly expressed in the central nervous system, including the cerebral cortex and hippocampus. TM4SF2 encodes a member of the tetraspanin family of proteins, which are known to contribute in molecular complexes including beta-1 integrins. We speculate that through this interaction, TM4SF2 might have a role in the control of neurite outgrowth.  相似文献   

6.
7.
Camurati-Engelmann disease (CED; MIM 131300), or progressive diaphyseal dysplasia, is a rare, sclerosing bone dysplasia inherited in an autosomal dominant manner. Recently, the gene causing CED has been assigned to the chromosomal region 19q13 (refs 1-3). Because this region contains the gene encoding transforming growth factor-beta 1 (TGFB1), an important mediator of bone remodelling, we evaluated TGFB1 as a candidate gene for causing CED.  相似文献   

8.
The dystonias are a common clinically and genetically heterogeneous group of movement disorders. More than ten loci for inherited forms of dystonia have been mapped, but only three mutated genes have been identified so far. These are DYT1, encoding torsin A and mutant in the early-onset generalized form, GCH1 (formerly known as DYT5), encoding GTP-cyclohydrolase I and mutant in dominant dopa-responsive dystonia, and TH, encoding tyrosine hydroxylase and mutant in the recessive form of the disease. Myoclonus-dystonia syndrome (MDS; DYT11) is an autosomal dominant disorder characterized by bilateral, alcohol-sensitive myoclonic jerks involving mainly the arms and axial muscles. Dystonia, usually torticollis and/or writer's cramp, occurs in most but not all affected patients and may occasionally be the only symptom of the disease. In addition, patients often show prominent psychiatric abnormalities, including panic attacks and obsessive-compulsive behavior. In most MDS families, the disease is linked to a locus on chromosome 7q21 (refs. 11-13). Using a positional cloning approach, we have identified five different heterozygous loss-of-function mutations in the gene for epsilon-sarcoglycan (SGCE), which we mapped to a refined critical region of about 3.2 Mb. SGCE is expressed in all brain regions examined. Pedigree analysis shows a marked difference in penetrance depending on the parental origin of the disease allele. This is indicative of a maternal imprinting mechanism, which has been demonstrated in the mouse epsilon-sarcoglycan gene.  相似文献   

9.
X-linked dominant Conradi-Hünermann syndrome (CDPX2; MIM 302960) is one of a group of disorders with aberrant punctate calcification in cartilage, or chondrodysplasia punctata (CDP). This is most prominent around the vertebral column, pelvis and long bones in CPDX2. Additionally, CDPX2 patients may have asymmetric rhizomesomelia, sectorial cataracts, patchy alopecia, ichthyosis and atrophoderma. The phenotype in CDPX2 females ranges from stillborn to mildly affected individuals identified in adulthood. CDPX2 is presumed lethal in males, although a few affected males have been reported. We found increased 8(9)-cholestenol and 8-dehydrocholesterol in tissue samples from seven female probands with CDPX2 (ref. 4). This pattern of accumulated cholesterol intermediates suggested a deficiency of 3beta-hydroxysteroid-delta8,delta7-isomerase (sterol-delta8-isomerase), which catalyses an intermediate step in the conversion of lanosterol to cholesterol. A candidate gene encoding a sterol-delta8-isomerase (EBP) has been identified and mapped to Xp11.22-p11.23 (refs 5,6). Using SSCP analysis and sequencing of genomic DNA, we found EBP mutations in all probands. We confirmed the functional significance of two missense alleles by expressing them in a sterol-delta8-isomerase-deficient yeast strain. Our results indicate that defects in sterol-delta8-isomerase cause CDPX2 and suggest a role for sterols in bone development.  相似文献   

10.
We demonstrate here the importance of interleukin signalling pathways in cognitive function and the normal physiology of the CNS. Thorough investigation of an MRX critical region in Xp22.1-21.3 enabled us to identify a new gene expressed in brain that is responsible for a non-specific form of X-linked mental retardation. This gene encodes a 696 amino acid protein that has homology to IL-1 receptor accessory proteins. Non-overlapping deletions and a nonsense mutation in this gene were identified in patients with cognitive impairment only. Its high level of expression in post-natal brain structures involved in the hippocampal memory system suggests a specialized role for this new gene in the physiological processes underlying memory and learning abilities.  相似文献   

11.
We show that haploinsufficiency of KANSL1 is sufficient to cause the 17q21.31 microdeletion syndrome, a multisystem disorder characterized by intellectual disability, hypotonia and distinctive facial features. The KANSL1 protein is an evolutionarily conserved regulator of the chromatin modifier KAT8, which influences gene expression through histone H4 lysine 16 (H4K16) acetylation. RNA sequencing studies in cell lines derived from affected individuals and the presence of learning deficits in Drosophila melanogaster mutants suggest a role for KANSL1 in neuronal processes.  相似文献   

12.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

13.
The autosomal dominant retinitis pigmentosa (RP) locus, designated RP1, has been mapped through linkage studies to a 4-cM interval at 8q11-13. Here we describe a new photoreceptor-specific gene that maps in this interval and whose expression is modulated by retinal oxygen levels in vivo. This gene consists of at least 4 exons that encode a predicted protein of 2,156 amino acids. A nonsense mutation at codon 677 of this gene is present in approximately 3% of cases of dominant RP in North America. We also detected two deletion mutations that cause frameshifts and introduce premature termination codons in three other families with dominant RP. Our data suggest that mutations in this gene cause dominant RP, and that the encoded protein has an important but unknown role in photoreceptor biology.  相似文献   

14.
Mutations in EFHC1 cause juvenile myoclonic epilepsy   总被引:27,自引:0,他引:27  
Juvenile myoclonic epilepsy (JME) is the most frequent cause of hereditary grand mal seizures. We previously mapped and narrowed a region associated with JME on chromosome 6p12-p11 (EJM1). Here, we describe a new gene in this region, EFHC1, which encodes a protein with an EF-hand motif. Mutation analyses identified five missense mutations in EFHC1 that cosegregated with epilepsy or EEG polyspike wave in affected members of six unrelated families with JME and did not occur in 382 control individuals. Overexpression of EFHC1 in mouse hippocampal primary culture neurons induced apoptosis that was significantly lowered by the mutations. Apoptosis was specifically suppressed by SNX-482, an antagonist of R-type voltage-dependent Ca(2+) channel (Ca(v)2.3). EFHC1 and Ca(v)2.3 immunomaterials overlapped in mouse brain, and EFHC1 coimmunoprecipitated with the Ca(v)2.3 C terminus. In patch-clamp analysis, EFHC1 specifically increased R-type Ca(2+) currents that were reversed by the mutations associated with JME.  相似文献   

15.
During development, visual photoreceptors, bipolar cells and other neurons establish connections within the retina enabling the eye to process visual images over approximately 7 log units of illumination. Within the retina, cells that respond to light increment and light decrement are separated into ON- and OFF-pathways. Hereditary diseases are known to disturb these retinal pathways, causing either progressive degeneration or stationary deficits. Congenital stationary night blindness (CSNB) is a group of stable retinal disorders that are characterized by abnormal night vision. Genetic subtypes of CSNB have been defined and different disease actions have been postulated. The molecular bases have been elucidated in several subtypes, providing a better understanding of the disease mechanisms and developmental retinal neurobiology. Here we have studied 22 families with 'complete' X-linked CSNB (CSNB1; MIM 310500; ref. 4) in which affected males have night blindness, some photopic vision loss and a defect of the ON-pathway. We have found 14 different mutations, including 1 founder mutation in 7 families from the United States, in a novel candidate gene, NYX. NYX, which encodes a glycosylphosphatidyl (GPI)-anchored protein called nyctalopin, is a new and unique member of the small leucine-rich proteoglycan (SLRP) family. The role of other SLRP proteins suggests that mutant nyctalopin disrupts developing retinal interconnections involving the ON-bipolar cells, leading to the visual losses seen in patients with complete CSNB.  相似文献   

16.
17.
We identified de novo truncating mutations in ARID1B in three individuals with Coffin-Siris syndrome (CSS) by exome sequencing. Array-based copy-number variation (CNV) analysis in 2,000 individuals with intellectual disability revealed deletions encompassing ARID1B in 3 subjects with phenotypes partially overlapping that of CSS. Taken together with published data, these results indicate that haploinsufficiency of the ARID1B gene, which encodes an epigenetic modifier of chromatin structure, is an important cause of CSS and is potentially a common cause of intellectual disability and speech impairment.  相似文献   

18.
X-linked mental retardation (XLMR) is an inherited condition that causes failure to develop cognitive abilities, owing to mutations in a gene on the X chromosome. The latest XLMR update lists up to 136 conditions leading to 'syndromic', or 'specific', mental retardation (MRXS) and 66 entries leading to 'nonspecific' mental retardation (MRX). For 9 of the 66 MRX entries, the causative gene has been identified. Our recent discovery of the contiguous gene deletion syndrome ATS-MR (previously known as Alport syndrome, mental retardation, midface hypoplasia, elliptocytosis, OMIM #300194), characterized by Alport syndrome (ATS) and mental retardation (MR), indicated Xq22.3 as a region containing one mental retardation gene. Comparing the extent of deletion between individuals with ATS-MR and individuals with ATS alone allowed us to define a critical region for mental retardation of approximately 380 kb, containing four genes. Here we report the identification of two point mutations, one missense and one splice-site change, in the gene FACL4 in two families with nonspecific mental retardation. Analysis of enzymatic activity in lymphoblastoid cell lines from affected individuals of both families revealed low levels compared with normal cells, indicating that both mutations are null mutations. All carrier females with either point mutations or genomic deletions in FACL4 showed a completely skewed X-inactivation, suggesting that the gene influences survival advantage. FACL4 is the first gene shown to be involved in nonspecific mental retardation and fatty-acid metabolism.  相似文献   

19.
Focal dermal hypoplasia is an X-linked dominant disorder characterized by patchy hypoplastic skin and digital, ocular and dental malformations. We used array comparative genomic hybridization to identify a 219-kb deletion in Xp11.23 in two affected females. We sequenced genes in this region and found heterozygous and mosaic mutations in PORCN in other affected females and males, respectively. PORCN encodes the human homolog of Drosophila melanogaster porcupine, an endoplasmic reticulum protein involved in secretion of Wnt proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号