首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
条子河中多环芳烃和有机氯农药的时空分布及来源解析   总被引:7,自引:0,他引:7  
以辽河支流条子河中的多环芳烃(PAHs)和有机氯农药(OCPs)为目标物, 分别于春汛期、 丰水期、 平水期和枯水期采集水样及表层沉积物样品, 分析样品中PAHs和OCPs的赋存状态及污染物在该区域的分布和来源. 结果表明: 条子河水中总PAHs的质量浓度为658.1~3 096.6 ng/L, 均值(算术平均值, 下同)为
1 522.1 ng/L; 沉积物中总PAHs的质量比为775.7~2 835.4 ng/g, 均值为1 374.0 ng/g; 条子河水中总α,β,γ HCHs(六六六)的质量浓度为5.36~16.57 ng/L, 均值为10.93 ng/L; 滴滴涕(DDTs)未检出; 沉积物中总HCHs的质量比为2.87~5.56 ng/g, 均值为4.34 ng/g; 条子河水和沉积物中PAHs的含量均为自上游至下游递减, 且枯水期>平水期>春汛期>丰水期; 条子河水中HCHs的质量浓度自上游至下游递增, 且丰水期>春汛期>平水期>枯水期, 沉积物中HCHs的质量比自上游至下游递减, 且枯水期>平水期>春汛期>丰水期; 条子河中的PAHs主要来源于煤炭燃烧和交通燃烧, HCHs主要来源于农药林丹的使用.  相似文献   

2.
在丰水期、 枯水期和平水期分别采集松花江吉林市段的江水和沉积物样品, 先用气相色谱 质谱联用仪(GC MS)测定其中16种多环芳烃(PAHs)的含量, 再通过比值法对各水期江水和沉积物中的PAHs进行来源识别, 并分别利用商值法和风险效应值法评价江水和沉积物的生态风险. 结果表明: 松花江吉林市段丰水期、 枯水期和平水期江水中PAHs的质量浓度分别为0.917~3.974 μg/L,0.980~3.293 μg/L和0.771~4.127 μg/L; 丰水期和平水期沉积物中PAHs的质量比分别为1 035.5~1 732.0 ng/g和1 188.5~1 632.0 ng/g; 不同水期江水中的PAHs质量浓度变化较大, 沉积物中的PAHs质量比变化较小; PAHs为石油源和燃烧源混合输入所致; 江水中PAHs的生态风险较小, 表层沉积物中的PAHs具有一定的生态风险.  相似文献   

3.
对长江重庆段12个采样点枯水期和丰水期沉积物中多环芳烃(PAHs)的分析表明,枯水期PAHs含量为0.64~3.98 μg/g,丰水期为0.85~4.63 μg/g,其中菲(Phe)含量最高,占总量的11%~27%;PAHs组成集中在中环(3~5环),而低环(2环)和高环(6环)含量很少,组成随着采样时间不同存在着显著性差异,丰水期释放出更多高环PAHs.沉积物PAHs主要来源于植物、煤炭等燃料的不完全燃烧和来往船只的燃油泄漏;与其他地区相比,研究区PAHs含量处于中等水平,已有个别PAHs化合物(如芴Fle、菲Phe)超过生物毒性试验的可能效应浓度(PEL)标准,对该地区生态将构成一定的潜在危害.  相似文献   

4.
利用气相色谱-质谱联用仪(gas chromatography-mass spectrometer, GC-MS)分析了新安江河流-水库体系表层沉积物样品中16种优控多环芳烃(polycyclic aromatic hydrocarbons, PAHs)的含量.结果表明, 16种PAHs在表层沉积物样品中均有不同程度的检出,总浓度(∑_(16)PAHs)范围是260~1 652 ng/g dw (dry weight,干重),平均值为973 ng/g dw,以高分子量的PAHs为主.的区域是兰江∑_(16)PAHs值最高(1 530 ng/g dw),最低值出现在水库中心库区(600 ng/g dw). PAHs源解析表明,底泥中PAHs可能主要来源于煤和木材的燃烧.参考已有研究的分类标准,发现新安江上游、水库中心库区和富春江表层沉积物中PAHs处于中等污染水平,而水库回流区和兰江沉积物受到PAHs的污染较大.通过生态风险分析,发现所有底泥样品均可能存在急性毒理效应,但不存在频发性急性毒理效应.  相似文献   

5.
2016年12月北江清远段采集19个水和表层沉积物样品,采用气相色谱质谱(GCMS)法测定了样品中的多环芳烃(PAHs),分析了枯水期北江水环境中PAHs的污染水平,并对生态风险进行了评价。结果表明,枯水期北江清远段水中PAHs浓度范围为41. 2~413. 8 ng·L~(-1),主要以二环芳烃和三环芳烃为主,与国内外已报道河流湖泊相比,北江清远段水中PAHs污染处于中等污染水平;沉积物中PAHs浓度范围为54. 8~951. 5ng·g~(-1),以三环芳烃和四环芳烃为主,与国内外河流湖泊沉积物相比较,处于低污染水平。运用特征比值法对PAHs来源进行分析,北江清远段水和沉积物中枯水期PAHs污染来源主要由燃烧源所致,部分采样点存在混合源。通过计算终生致癌风险(ILCR)模型对北江清远段水体进行健康风险评价,结果表明,枯水期各采样点的致癌风险可忽略,婴幼儿的PAHs致癌风险高于青少年和成人。采用效应区间低、中值法(ERL/ERM)对枯水期表层沉积物中PAHs进行生态风险评价,个别点位表层沉积物中Dib超出ERL值,对生态环境潜在负面效应较小。  相似文献   

6.
湄洲湾表层沉积物中多环芳烃的含量分布及来源分析   总被引:24,自引:0,他引:24  
2000年10月在湄洲湾海域6个站位采集表层沉积物样。采用GC/MS法分析其多环芳烃的含量。结果显示:在这些沉积物样中,美国环保署优控的16种多环芳烃的含量分布较为均匀,其范围为196.7~299.7ng/g,平均值为256.1ng/g;显著低于长江口、珠江口及其欧美主要港口表层沉积物中多环芳烃的含量。对多环芳烃特征组分的比值(菲/蒽比值,荧蒽/芘比值)及16种多环芳烃中四、五和六环总含量的百分比的分析表明:湄洲湾表层沉积物的多环芳烃主要来源于燃料的高温燃烧。  相似文献   

7.
为了解辽河典型支流四平市条子河表层沉积物中多环芳烃(PAHs)的污染状况,选取10个采样点采集表层沉积物样品,测定了其中的PAHs质量浓度、分析了其空间分布特征、应用多种方法解析了PAHs的来源并对其生态风险进行了评价。结果表明,条子河表层沉积物中PAHs质量浓度范围为601.3~2 906.2 ng/g,算数平均值为1 527.3 ng/g,所检出的PAHs的环数均为2-4环化合物,且以4环为主,占PAHs的63.6%~71.5%。来源解析表明条子河表层沉积物中的PAHs主要来源于煤和生物质的燃烧。生态风险评价结果显示,3环的苊和芴在各个采样点可能产生一定的负面毒性效应;位于条子河干流、临近四平市城区采样点的沉积物中PAHs对生物可能产生中低毒性;而其他采样点存在综合生态风险的可能性很小。  相似文献   

8.
辽河支流条子河表层水体中多环芳烃的污染特征   总被引:1,自引:0,他引:1  
为了解辽河源头区典型支流——条子河四平段表层水体中多环芳烃(PAHs)的污染特征,分别于丰水期、平水期和枯水期采集条子河10个代表性断面的上覆水水样,测定了样品中16种优控PAHs的质量浓度、分析了其时空分布和来源,并对其生态风险进行了评价。结果表明:条子河表层水体中总PAHs的质量浓度(∑PAHs)范围为319.8~3 715.9 ng/L,平均值为1 476.0 ng/L,PAHs的组成以2~3环为主,占∑PAHs总量的53.1%~81.0%,5~6环的PAHs均未检测出。不同水期间,∑PAHs均值的大小顺序为:枯水期(2 035.0 ng/L)平水期(1 272.5 ng/L)丰水期(967.9 ng/L)。空间分布上,∑PAHs的检测最高值(3 715.9 ng/L)和平均浓度最大值(3 194.8 ng/L)均出现在位于四平市城区出境断面(汇合口)处。PAHs主要来源是石油、草木、煤炭的混合燃烧。条子河表层水体中苯并[a]芘的当量为5.1~36.1 ng/L,高于国家地表水环境质量标准值,条子河表层水体中PAHs存在一定的生态风险。  相似文献   

9.
考察第二松花江表层沉积物中16种多环芳烃类化合物(PAHs)的质量比. 结果表明: 16种PAHs的总质量比为350.0~3 877.4 ng/g, 平均质量比为1 322.6 ng/g, 4~6环相对丰度为58.5%, 2~3环相对丰度为41.5%; PAHs在上游水区的质量比最高, 与长江河口相近; 除河源区外, 大部分水域沉积物中PAHs人为来源为化石燃料的燃
烧, 少部分为石油源; 除表层沉积物中芴和苊烯可能具有一定的暴露风险外, 其他PAHs存在的暴露风险较小, 即第二松花江沉积物PAHs总量远低于风险评估低值(ERL), 存在的暴露风险较小.  相似文献   

10.
淮河中游重化工聚集区干流水体中多环芳烃研究   总被引:2,自引:0,他引:2  
淮河是中国七大河流之一,在中国国民经济发展中具有举足轻重的地位.有机物污染是淮河的主要污染形式.多环芳烃(PAHs)是一种典型持久性有机污染物(POPs),在水中的浓度较低.易于被悬浮物和沉积物吸附.为探讨淮河中游重化工聚集区干流水体中多环芳烃的含量和分布情况,2007年10月在淮南和蚌埠段采集悬浮物样品和表层沉积物样品.所采集的环境样品经自然风干后,利用二氯甲烷提取,无水硫酸钠和固相萃取柱组合净化,采用气相色谱-质谱联用法(GC-MS)同时定性和定量检测其PAHs含量,获得了美国EPA优先表中所列的16种PAHs含量数据,在此基础上探讨了淮河中游重化工聚集区干流水体悬浮物和沉积物样品中PAHs的分布特征.并初步分析了蚌埠市饮水源区蚌埠闸处PAHs的超标情况.结果表明:①淮河中游重化工聚集区干流水体环境样品中PAHs总含量变化幅度较大,其悬浮物浓度范围为1 169.44~4 048.86 ng/g,表层沉积物中浓度范围为91.98~1 292.52 ng/g;②就单一组分而言,悬浮物中萘含量最高,表层沉积物中二苯并[a,h]蒽最高;③受采样点环境和PAHs本身性质影响,悬浮物中PAHs量远大于其沉积物中量,整体呈现悬浮物中以低环PAHs为主、沉积物中以高环PAHs为主的特征;④根据<国家海洋沉积物质量标准>,蚌埠闸沉积物中PAHs超标严重,对蚌埠市的饮水安全产生一定的威胁,同时,此处悬浮物中PAHs含量也很高,潜在危害性更大,应给予重视.  相似文献   

11.
焦化厂区环境空气中多环芳烃的气固分布特征   总被引:1,自引:0,他引:1  
采集山西省4个典型焦化厂区环境空气中气态和颗粒态样品,通过GC-MS测定美国环保局优控的16种多环芳烃(PAHs).焦化厂区16种PAHs质量浓度之和在3.7396~18.1610 μg·m-3之间,且随着焦炉高度的增大而减小,其中特征污染物苯并(a)芘质量浓度在0.008 9~0.099 8μg·m-3之间.气相PAHs均值中萘和菲质量浓度较高,苯并(ghi)苝质量浓度最低;颗粒相中苯并(b)荧蒽质量浓度最高,蒽质量浓度最低;总PAHs中气相质量浓度较高,质量分数为87.2%.故应采取措施监控炼焦过程中萘和菲的排放.对PAHs的气固分配系数与液相饱和蒸汽压进行相关性分析,二者相关系数R2=0.95,斜率mr=-0.52,表明吸收机制是焦化厂区环境空气中PAHs在颗粒物上附着的主要原因.  相似文献   

12.
Department of Environmental Hygiene; The Third Military Medical University   总被引:1,自引:1,他引:1  
使用GC-MS对三峡地区重庆段河流中的多环芳烃污染进行了分析研究.共检出萘、苊、二氢苊、芴、菲、蒽、萤蒽、芘共8种多环芳烃,其浓度均在0.7μg/L以下,推测其主要来源于燃料燃烧.其中检出率高是菲、芘、萤蒽3种多环芳烃,它们在每个水取样均有检出,应该予以关注.  相似文献   

13.
西江水体中多环芳烃的分布特征   总被引:1,自引:0,他引:1  
采用玻璃纤维滤膜过滤分离西江水柱样品,并根据气相色谱一质谱联用(GC-MS)对多环芳烃(PAHs)进行定量分析.结果表明,溶解相和颗粒相中多环芳烃的浓度分别为21.7~138 ng·L-1和40.9~238μg·kg-1.水体中多环芳烃的总含量(颗粒相及溶解相),洪水期(43.9~116.9ng·L-1)大于枯水期(25.2~34.1 ng·L-1).从PAHs组成特点来看,溶解相以3环的PAHs为主,占总组分的80%;而颗粒相以3环、4环的PAHs为主,分别占总组分的48%和41%.西江水体多环芳烃的总含量,高于欧洲一些低污染水域,但低于国内一些主要河流.  相似文献   

14.
考察第二松花江表层沉积物中16种多环芳烃类化合物(PAHs)的质量比.结果表明:16种PAHs的总质量比为350.0~3 877.4ng/g,平均质量比为1 322.6ng/g,4~6环相对丰度为58.5%,2~3环相对丰度为41.5%;PAHs在上游水区的质量比最高,与长江河口相近;除河源区外,大部分水域沉积物中PAHs人为来源为化石燃料的燃烧,少部分为石油源;除表层沉积物中芴和苊烯可能具有一定的暴露风险外,其他PAHs存在的暴露风险较小,即第二松花江沉积物PAHs总量远低于风险评估低值(ERL),存在的暴露风险较小.  相似文献   

15.
在一台国Ⅱ标准的非道路用柴油机上对半挥发性有机物(SVOCs)进行采样研究发现,非道路用柴油机排放气相SVOCs高于颗粒固相SVOCs,且在两相中的排放量均呈现随负荷增加而增加的趋势在气相和颗粒固相SVOCs中检出以烷烃为主,其次为多环芳烃类物质,包括2,3-二氢茚、四氢化萘、联苯、萘、芴、蒽、菲、芘等及其同系物.同时在对SVOCs中PAHs的研究中发现,柴油机排放的PAHs以气相为主,含量明显高于颗粒固相中PAHs;对比气固两相的浓度分布发现,气相PAHs中萘、苊烯、二氢苊、芴、菲、蒽为主,占气相PAHs质量比高达95%,而颗粒固相中PAHs则以菲、芘、荧蒽、屈、苯并(a)蒽等为主,其中苯并(a)蒽与屈在不同工况下质量比达80%以上;气相中PAHs环数以3环和2环为主,而大部分工况下颗粒固相中PAHs环数以4环为主,其次为3环.  相似文献   

16.
通过对山西省阳泉市开发区三条绿化带主干道土壤表层沉积物和杂质进行取样和检测,分析了多环芳烃(PAHs)中16种有机化学污染物含量.取样和检测方法采用气相色谱-质谱法.检测结果表明,萘,菲和蒽三种常见的PAHs有机污染物均被准确检测出超出国家标准的限数值,阳泉市开发区所属工业区域的三条绿化带主干道表层土壤受到了污染.  相似文献   

17.
太湖饮用水源地多环芳烃分布特征和溯源分析   总被引:1,自引:0,他引:1  
持久性有机污染物引起的水质安全性问题日益受到广泛关注.为探究太湖饮用水源地多环芳烃的污染情况,对太湖饮用水源地表层沉积物进行了采样,对多环芳烃进行了定量检测,分析了研究区沉积物中多环芳烃浓度分布,同时采用2种方法(特征化合物法和主成分分析法)进行溯源分析.结果表明:太湖饮用水源地表层沉积物检测出11种PAHS,总量介于nd~280ng·g-1之间,平均值为114ng·g-1.和国内外其他湖泊、河口及海湾地区相比,太湖饮用水源地PAHs污染处于低水平.太湖饮用水源地表层沉积物PAHs组成以4环及5~6环PAHs为主(分别为43.86%和50.88%),2~3环PAHs相对较低(5.26%).太湖饮用水源地表层沉积物PAHs主要来源为化石燃料(包括汽油、柴油、煤、木柴等)的燃烧,但也与石油污染有关.本文成果可为太湖流域水污染防治和水资源管理提供科学参考.  相似文献   

18.
广州市工业、交通区表层土壤中多环芳烃分布特征初探   总被引:3,自引:0,他引:3  
 在广州市的石化企业、发电厂、高速公路、机场等典型工业、交通区采集了28个表层土壤,分析其中多环芳烃(PAHs)的含量水平和组成特征,并初步评价和揭示土壤PAHs的污染程度和来源。结果表明:研究区表层土壤中PAHs含量分布存在较大的变异性,PAHs总含量分布于未检出~5543.5μg/kg之间;单种PAH中芴(Flu) 、荧蒽(Fla)、 (Chr)和苯并[b]荧蒽(Bbf) 的检出率较高,均在70%以上;采自废弃化肥厂遗址及旧机场的部分土壤受PAHs污染的程度相对较严重,PAHs的残留程度明显高于其他采样区的土壤;各采样区土壤中PAHs的组成以4环及4环以上化合物为主;根据PAHs的组成特征及Fla/Pyr特征比值可以初步推测高温燃烧排放是大部分研究区土壤中PAHs的主要污染来源之一。  相似文献   

19.
贵州省遵义地区表层土壤中多环芳烃分布特征   总被引:1,自引:1,他引:1  
调查研究了151个取至贵州省遵义地区12个市(县)的土壤中的多环芳烃(PAHs)的背景含量及与各市(县)总污染物排放量的关系.遵义地区各县(市)表层土壤中PAHs含量介于0.8~251 μg/kg,从单个化合物的检出情况来看,主要以二环、三环和四环PAHs检出率较高,其中四环以苯并(a)蒽,苯并(b)蒽及屈为主,检出率分别为41.7%,38.1%和34.4%.三环PAHs中以菲与蒽的检出率较高分别为37.1%和30.5%,具有两个环化合物以芴与苊为主,检出率分别为41.1%和27.8%.遵义地区各县(市)表层土壤PAHs检出特征虽大体相同,但其含量却有较大差异,其中遵义县∑PAHs的含量最最高,平均为74.5μg/kg,最低为绥阳县为13.74μg/kg,各采样点平均16种PAHs含量从低到高依次为:绥阳县、湄潭县、桐梓县、仁怀、务川县、余庆县、凤冈县、正安县、习水县、赤水县、道真县和遵义县.各县∑PAHs含量的差异与该县市空气与废水排放总量呈显著正相关,相关系数r为0.971,表明贵州土壤中的PAHs主要来自于能源物质的燃烧和PAHs全球范围内的自然迁移,但土壤处于较低污染状态.  相似文献   

20.
泉州湾表层沉积物对多环芳烃潜在降解活性的研究   总被引:3,自引:0,他引:3  
在泉州湾设置7个站位,测定了2004年2月航次表层沉积物在添加PAHs后呼吸活性的变化,结合多环芳烃降解菌的数量及细菌总量的测定,对泉州湾海域表层沉积物对多环芳烃的降解潜力进行综合分析.结果显示,添加碳源在一定程度上提高了土壤的呼吸活性,外加PAHs对各站点的影响有别,同一样品受菲、芘、荧蒽的影响各不相同,其影响程度与本土降解菌的数量有一定相关性,表明细菌在海洋环境PAHs的生物降解中起着至关重要的作用;19 d后各样品的呼吸作用强度逐渐接近自然对照样,可见该海域表层沉积物中微生物有着强大的适应不良环境的能力与降解PAHs的潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号