首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
Yang  Wei  Yao  TanDong  Xu  BaiQing  Ma  LingLong  Wang  ZhiHui  Wan  Ming 《科学通报(英文版)》2010,55(20):2097-2102
Little is known about recent variation of temperate glaciers on the Tibetan Plateau, although they are of particular theoretical and practical interests in terms of climate change and water supply. The study of glacier mass balance and terminus variation for six temperate glaciers in the Parlung Zangbo River basin, southeast Tibetan Plateau, shows the facts of the overall negative mass balance and the continued terminus retreat from 2005/2006 to 2007/2008. The mass balances of smaller glaciers were more negative compared to larger glaciers. Referring the trend of glacier mass balance in the Hengduan Mountains, the Himalayas and glacier shrinkage in southeast Tibetan Plateau, the mass loss and recession of temperate glacier in this region are expected if the current climate condition continues.  相似文献   

2.
Due to climate changes, most of the alpine glaciers have retreated dramatically during the past decades. Thus it is significant to predict the alpine glacier variability in the future for a better understanding of the impact of climate changes on water resource. In this paper, we perform the numerical simulation on Urumqi Glacier No.1 in the eastern Tianshan, central Asia (hereafter Glacier No.1 for short) by considering both the mass balance and ice flow. Given the shape of the Glacier No.1, the velocity of the glacier is obtained by solving a two-dimensional nonlinear Stokes equation and simulated result is in agreement with the observation. In order to predict the variability of Glacier No.1 in the next decades, a climatic scenario is constructed with a temperature rise rate as 0.17°C/10 a and precipitation as constant during the period of 2005-2070. The simulation shows that, the glacier terminus will retreat slowly and the glacier will thin dramatically before 2040, while after year 2040, the glacier terminus retreat will accelerate. This study confirms the increasing retreat rate of alpine glaciers under global warming.  相似文献   

3.
Ma  LingLong  Tian  LiD  Pu  JianChen  Wang  PengLing 《科学通报(英文版)》2010,55(20):2088-2096
This paper calculated and evaluated the area and ice volume changes of Kangwure Glacier in Mt. Xixiabangma, middle of Himalayas in the past 3 decades, based on the field survey of glacier boundary position by differential GPS and glacier depth by Ground Penetrating Radar (GPR), together with the topographic map and remote sense data. The studied data showed that the Kangwure Glacier has experienced significant mass deficit since the 1970s, with 34.2% of area loss, 48.2% of ice volume loss and 7.5 m of average thickness decrease. This result revealed that the ice volume loss of Himalayan glaciers was more serious than expected. Analysis of meteorological data from two weather stations in the region of Mt. Xixiabangma, shows that the air temperature of this region has risen from the middle of the 20th century to the beginning of the 21st century. Significant retreat of Himalayas glacier driven by climatic warming will have a remarkable impact on hydrology and ecosystem.  相似文献   

4.
Late Pleistocene glaciation of the Changbai Mountains in northeastern China   总被引:6,自引:0,他引:6  
Zhang  Wei  Niu  Yunbo  Yan  Ling  Cui  Zhijiu  Li  ChuanChuan  Mu  Kehua 《科学通报(英文版)》2008,53(17):2672-2684
The Changbai Mountains (2749 m a.s.l.) in northeastern China are one of the typical mountain regions with glaciation since late Pleistocene as evidenced by well-preserved erosive and accumulative landforms at elevations above 2000 m a.s.l, formed by glaciers around the crater lake, Tianchi Lake. Cirque glaciers developed on both the inner and outer sides of the volcanic cone. Well-preserved cirques, glacial trough valleys, glacial threholds, polished surfaces of the glacial erratics and the moraine ridges indicate that several glaciation processes took place during the last glacial period in this region. Resuits of optically stimulated luminescence (OSL) dating on the moraine sediments, and the K/Ar, thermal ionization mass spectrometry (TIMS), electronic spinning resonance (ESR) dating on the volcanic rocks suggest two periods of glacier advances. One is named the Black Wind Mouth glacier advance taking place on the west and north slopes of the volcanic cone at an elevation of 2000-2100 m a.s.l., which is dated to about 20 ka, being the result of the Last Glacial Maximum (LGM). The other is named the Meteorological Station glacier advance at the elevation of 2400-2600 m a.s.l., dated to 11 ka during the late glacial period, and is tentatively correlated to the Younger Dryas stage. The scope of the former glacier advance is larger than that of the latter. Regional comparisons showed that the glacial sequences in the Changbai Mountains are similar to other glaciated areas in eastern Asia during the later part of the last glacial cycle.  相似文献   

5.
By comparing digitized glacier outlines from the Chinese Glacier Inventory (CGI) during the 1960s–1970s and Landsat Enhance Thematic Mapper (ETM+) images from 1999 to 2001, we investigated changes for about 7665 alpine glaciers among 11665 glaciers in seven sub-basins of the Tarim Interior River basin (TIRB). The results showed that the total glacier area was reduced by 3.3% from the 1960s/ 1970s to 1999/2001 and area losses for 1–5 km2 glaciers accounted for 48.3% of the total glacier area loss in the TIRB. However, the glacier area reductions varied from 0.7% to 7.9% among the seven sub-basins of the TIRB during the study period. The glacier area changing with altitude showed that the maximum contribution of area shrinkage occurred at 4900–5400 m. Data from 25 meteorological stations in the TIRB showed increases in both the annual mean air temperature and annual precipitation during 1960–2000. This indicates that the glacier shrinkage in the TIRB over the last 40 years was largely due to regional climate warming that enhanced glacier ablation and overcame the effects of increased precipitation on the glacier mass balance.  相似文献   

6.
Antarctic ice-sheet loss driven by basal melting of ice shelves   总被引:6,自引:0,他引:6  
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.  相似文献   

7.
A Kääb  E Berthier  C Nuth  J Gardelle  Y Arnaud 《Nature》2012,488(7412):495-498
Glaciers are among the best indicators of terrestrial climate variability, contribute importantly to water resources in many mountainous regions and are a major contributor to global sea level rise. In the Hindu Kush-Karakoram-Himalaya region (HKKH), a paucity of appropriate glacier data has prevented a comprehensive assessment of current regional mass balance. There is, however, indirect evidence of a complex pattern of glacial responses in reaction to heterogeneous climate change signals. Here we use satellite laser altimetry and a global elevation model to show widespread glacier wastage in the eastern, central and south-western parts of the HKKH during 2003-08. Maximal regional thinning rates were 0.66?±?0.09 metres per year in the Jammu-Kashmir region. Conversely, in the Karakoram, glaciers thinned only slightly by a few centimetres per year. Contrary to expectations, regionally averaged thinning rates under debris-mantled ice were similar to those of clean ice despite insulation by debris covers. The 2003-08 specific mass balance for our entire HKKH study region was -0.21?±?0.05?m?yr(-1) water equivalent, significantly less negative than the estimated global average for glaciers and ice caps. This difference is mainly an effect of the balanced glacier mass budget in the Karakoram. The HKKH sea level contribution amounts to one per cent of the present-day sea level rise. Our 2003-08 mass budget of -12.8?±?3.5 gigatonnes (Gt) per year is more negative than recent satellite-gravimetry-based estimates of -5?±?3?Gt?yr(-1) over 2003-10 (ref. 12). For the mountain catchments of the Indus and Ganges basins, the glacier imbalance contributed about 3.5% and about 2.0%, respectively, to the annual average river discharge, and up to 10% for the Upper Indus basin.  相似文献   

8.
The causes and timing of tropical glacier fluctuations during the Holocene epoch (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000?years (11?kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8?±?0.9 to 8.5?±?0.4?kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3?±?0.8 °C cooler at 11?kyr ago and remained -2.1?±?0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics.  相似文献   

9.
Glacier variations and climate warming and drying in the central Himalayas   总被引:24,自引:4,他引:20  
Repeat measurements of glacier terminus positions show that glaciers in the central Himalayas have been in a continuous retreat situation in the past decades. The average retreat rate is 5.5-8.7 m/a in Mt. Qomolangma(Everest) since the 1960s and 6.4 m/a in Mt. Xixiabangma since the 1980s. In recent years, the retreat rate is increasing.Ice core studies revealed that the accumulation rate of glaciers has a fluctuating decrease trend in the last century with a rapid decrease in the 1960s and a relatively steady low value afterwards. Meteorological station record indicates that the annual mean temperature has a slow increase trend but summer temperature had a larger increase in the past 30 a. All these suggest that the glacier retreat results from precipitation decrease in combination with temperature increase,and hence glacier shrinkage in this region will speed up if the climatic warming and drying continues.  相似文献   

10.
Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier   总被引:1,自引:0,他引:1  
Joughin I  Abdalati W  Fahnestock M 《Nature》2004,432(7017):608-610
It is important to understand recent changes in the velocity of Greenland glaciers because the mass balance of the Greenland Ice Sheet is partly determined by the flow rates of these outlets. Jakobshavn Isbrae is Greenland's largest outlet glacier, draining about 6.5 per cent of the ice-sheet area, and it has been surveyed repeatedly since 1991 (ref. 2). Here we use remote sensing data to measure the velocity of Jakobshavn Isbrae between 1992 and 2003. We detect large variability of the velocity over time, including a slowing down from 6,700 m yr(-1) in 1985 to 5,700 m yr(-1) in 1992, and a subsequent speeding up to 9,400 m yr(-1) by 2000 and 12,600 m yr(-1) in 2003. These changes are consistent with earlier evidence for thickening of the glacier in the early 1990s and rapid thinning thereafter. Our observations indicate that fast-flowing glaciers can significantly alter ice discharge at sub-decadal timescales, with at least a potential to respond rapidly to a changing climate.  相似文献   

11.
帕隆藏布流域位于中国海洋性冰川最为发育的藏东南地区,近年来随着全球温室效应加剧,帕隆藏布流域冰川变化极为显著。采用多期遥感影像,对1994~2015年间帕隆藏布流域波密至然乌段的冰川变化趋势、原因及其影响进行研究。结果表明:(1)20余年间冰川总面积减少了451. 72 km2,各冰川每年大约退缩2. 48%~2. 95%,气温升高以及降雨量减少是导致冰川面积持续退缩的主要原因。(2)由于帕隆藏布江南岸山坡所接收的太阳辐射热量更少,但降水却更加充沛,使得帕隆藏布江南岸冰川分布面积及覆盖率远大于北岸,而冰川退缩速率远小于北岸。(3)冰川的不断退缩使得沟道上游大量冻融松散物源在冰雪融水的外动力条件下,进入沟道形成松散堆积物源,导致流域内大规模发育冰川泥石流。由于帕隆藏布江南岸冰川规模更大,导致帕隆藏布江南岸冰川泥石流更为发育。(4)冰川变化动态监测对冰川泥石流机理分析以及预警研究工作有着重要的参考指导价值。  相似文献   

12.
利用《中国第二次冰川编目》的数据和卫星图, 结合野外地貌观测, 探讨喜马拉雅山亚东?康马段的冰川平衡线高度(ELA)、分布特征及影响因素。结果表明, 研究区现代冰川平均ELA 为5717 m, 库拉岗日地区稍高, 为5840~5957 m, 白马林岗日地区较低, 为5333~5373 m, 反映气候与地形大势对冰川ELA的控制。此外, 山脉的走向、坡向、冰川地形坡度以及冰川表面冰碛覆盖、雪崩等对冰川ELA有不同程度的影响。  相似文献   

13.
Ren  JiaWen  Ye  BaiSheng  Ding  YongJian  Liu  ShiYin 《科学通报(英文版)》2011,56(16):1661-1664
Recent studies have shown that cryospheric melting is becoming the dominant factor responsible for sea level rise,and that the melt-water from mountain glaciers and ice caps has comprised the majority of the cryospheric contribution since 2003.Analysis of the estimations of cryospheric melt-water and precipitation in glacier regions indicated that the potential contribution of the cryosphere in China is 0.14 to 0.16 mm a–1,of which approximately 0.12 mm a–1 is from glaciers.The contribution of glaciers in the outflow river basins is about 0.07 mm a–1,accounting for 6.4%of the total from global glaciers and ice caps.  相似文献   

14.
An ice core record at Mt. Qomolangma (Everest) since 1954 reveals a sharp decline in net-accumulation in the 1960s, and the annual net-accumulation during the 1970s to the beginning of the 1990s is only half of that at the end of the 1950s. The decreased net-accumulation is coincident with glacier retreat, which is associated with recent temperature increase in the region that intensified the ablation. Under the background of global warming, such glacier variation trends will aggravate.  相似文献   

15.
Interests on climate change in the source region of Yangtze River have been raised since it is a region with the greatest warming over the Tibetan Plateau (TP). A 70-year history of precipitation δ~(18)O has been recovered using an ice core record retrieved in a plat portion of the firn area in the Guoqu Glacier (33°34′37.8″N, 91°10′35.3″E, 5720 m a.s.l.), Mt. Geladaindong (the source region of Yangtze River), in November, 2005. By using a significant positive relationship between ice core δ~(18)O record and summer air temperature (July to September) from the nearby meteorological stations, a history of summer air temperature has been reconstructed for the last 70 years. Summer temperature was relatively low in 1940s and high in 1950s to the middle of 1960s. The lowest temperature occurred in the middle of 1970s. Temperature was low in 1980s and dramatically increased since 1990s, keeping the trend to the begin-ning of the 21st century. The warming rate recorded in the ice core with 0.5℃/10 a since 1970s is much higher that that in the central TP and the Northern Hemisphere (NH), and it becomes 1.1℃/10 a since 1990s which is also higher than these from the central TP and the NH, reflecting an accelerated warm-ing and a more sensitive response to global warming in the high elevation region.  相似文献   

16.
Isolated NE-SW stretching the Helan Mountain massif, separating the temperate grassland of the Ordos plateau from the Tenggeli Desert, is a key position of studying the glacier development in west China as well as the coupling conditions of climate change with tectonic uplift. The glacial landforms and deposits including cirques, peaks, knife-edge ridges, lateral moraines, and terminal moraines distribute above 2800 m a.s.l. in the middle part of the Helan Mountain. This distribution indicates that here was once glaciated during the late Quaternary. Morphology features show a clear sequence of landscape forming events took place throughout the Helan Mountain. Laboratory optically stimulated luminescence (OSL) and accelerator mass spectrometry radio-carbon dating (AMS 14 C) results indicate a late history of glacial advance. Late Pleistocene glaciers in the middle part of the Helan Mountain advanced to near their positions at least four times, and the glacial sequences can be assigned as the middle stage of last glacial cycle (MIS3b, 43.2±4.0 ka), last glacial maximum (LGM, ~18 ka), late glacial (12.0±1.1 ka) and neo-glacial (3.4± 0.3 ka) respectively. Adopting equilibrium line altitude ~2980 m of last glacial maximum and the modern theoretical snowline altitude ~4724 m as the maximum amplitudes, and the standard marine isotope curve (MIS) as the glacial equilibrium line change since the Gonghe Movement (150 ka), the relationship between the mountain altitude and glacier development is discussed herein. Compared with other environmental indexes such as the loesspaleosol and ice core, conclusions are made that glacier advances in the Helan Mountain during the late Quaternary obviously depended on the coupled control of tectonic uplift of mountain with the climate condition. It is at last glaciation that the mountain reached the altitude above snowline and coupled with the glacial climate. The glacial advances occurred in the early and middle stages of last glacial cycle after the Gonghe Movement.  相似文献   

17.
Continuous Bi profile of the East Rongbuk (ER) ice core near Mt. Qomolangma reveals nine major volcanic events since AD 1800. Compared with Volcanic Explosivity Index (VEI), it shows that the concentrations of Bi in the ER ice core can reflect the major volcanic events within the key areas. This provides a good horizon layer for ice core dating, as well as a basis for reconstructing a long sequence of volcanic records from the Qinghai-Xizang (Tibet) Plateau ice cores. Supported jointly by National Basic Research Program of China (Grant No. 2007CB411501), National Natural Science Foundation of China (Grant No. 90411003), Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-344) and Hundred Talents Project of the Chinese Academy of Sciences  相似文献   

18.
Wu  GuangJian  Yao  TanDong  Xu  BaiQing  Tian  LiDe  Li  Zhen  Duan  KeQin 《科学通报(英文版)》2008,53(16):2506-2512
Based on the oxygen isotope ratio and microparticle record in ice cores recovered at Mt. Muztagata, Eastern Pamirs, the seasonal variations of atmospheric dust have been reconstructed for the past four decades. High dust concentrations and coarser particle grains have the similar trend with oxygen isotope value. Our statistical results indicate that 50%--60% high dust concentration samples occur during the season with high oxygen isotope values (summer), while low dust storm frequency during spring and winter. Back-trajectory analysis shows that the air mass hitting Muztagata predominately came from West Asia (such as Iran-Afghanistan Plateau) and Central Asia, which are the main dust source area for Muztagata. Dust storms in those source areas most frequently occur during summer (from May to August), while frequent dust storm events in northern China mainly occur during spring (March to May). Regions in the path of Asian dust transport, such as in Japan, the North Pacific, and Greenland, also show high dust concentrations during spring (from March to May). Our results indicate that dust storms have different seasonality in different regions within Asia.  相似文献   

19.
Yao  TanDong 《科学通报(英文版)》2010,55(20):2071-2071
ost of the glacial mass on the Tibetan Plateau and the surrounding regions is in the mid- and low-latitudes. Ac-cording to China’s latest glacier inventory, there are about 36793 existing glaciers with a total area of roughly 49873.44 km2 on the Tibetan Plateau, accounting for about 79.5% of the total glaciers and 84% of the total glacial area in China. Glaciers on the Tibetan Plateau can be categorized into three types: marine-type glaciers (or temperate glaciers); sub-continental glaciers (or sub-polar glaciers); and continental glaciers (i.e. polar glaciers).......  相似文献   

20.
Zhong  Min  Duan  JianBin  Xu  HouZe  Peng  Peng  Yan  HaoMing  Zhu  YaoZhong 《科学通报(英文版)》2009,54(5):816-821
The GRACE (Gravity Recovery and Climate Experiment) satellite gravity mission has provided a new method to study land water mass redistribution at medi- and long-spatial scales in recent years. We estimate continental water mass redistribution in China using GRACE observations during 2003 to 2007. The results show some large regions with increase or decrease of land water mass storage in the central northern region, Tibetan Plateau, the Three Gorges region, the place where Qinghai, Sichuan and Gansu provinces meet, and the Altun Mountains region in the Xinjiang Uygur Autonomous Region. In the first two regions, it is obvious that water (ice) mass storages are decreasing. Water mass in the central northern region decreases at a linear rate of 2.4 cm/a equivalent water height, equal to 5.2 billion cubic meters per year during the five years’ period, and water mass depletion in Hebei Province is ∼ 4.5 billion cubic meters per year in the same period, which is consistent with the average water mass depletion of 4.0 billion cubic meters per year of overused underground water in the recent 30 years estimated by Hebei Province Water Resources Bureau. Furthermore, GRACE can detect the water mass accumulation of ∼ 5 cm equivalent water height within the region spreading over about 0.12 million square kilometers due to the Three Gorges dam construction in June 2003. We also find a water mass gain of ∼ 1.1 cm/a in the areas where Qinghai, Sichuan and Gansu provinces meet. This indicates that the climate of these regions has been becoming gradually humid in recent years. Supported by Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-202), National Natural Science Foundation of China (Grant No. 40674038), and Program of Key Laboratory of Space Environment and Geodesy of Ministry of Education of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号