首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
细胞壁是植物细胞区别于动物细胞的重要结构特征之一,在植物细胞生长发育和环境响应中发挥重要作用.同时,地球上陆生植物光合作用产物约70%存于细胞壁中,细胞壁生物质是地球上最丰富的可再生资源.植物如何将光合产物合成为细胞壁成分?人类如何有效利用大量的、可再生的细胞壁生物质资源?这些问题近年来受到了广泛的关注.本文对细胞壁合成、利用生物技术对细胞壁生物质进行改造,以及细胞壁生物质利用等研究进行简要介绍和综述.  相似文献   

2.
莲叶柄导管次生壁蛋白的发现和初步研究   总被引:1,自引:0,他引:1  
张金忠 《科学通报》1993,38(12):1131-1131
植物细胞壁包括初生壁和次生壁两种类型,具有多方面的生物学功能.用组织培养的方法可以得到只有初生壁而无次生壁的愈伤组织或悬浮培养细胞.Lamport用这种材料于1960年首次在初生壁中发现了一类富含羟脯氨酸的蛋白质,定名为伸展蛋白(extension).以后,人们又在多种植物的初生细胞壁和花粉壁中发现了其它一些壁蛋白和酶.经过30年  相似文献   

3.
细胞外钙调素对花粉萌发和花粉管伸长的影响   总被引:8,自引:1,他引:8  
马力耕  徐小冬  崔素娟  孙大业 《科学通报》1997,42(24):2648-2652
钙调素(Calmodulin CaM)作为主要的多功能的Ca~(2+)受体,传统上被认为是细胞内信号转导(Signal transduction)途径中的主要信号分子。然而近年来国内外的一些研究结果表明CaM不仅存在于细胞内,也存在于细胞外。在植物系统中,Biro和孙大业等人(1984)首次发现燕麦胚芽鞘细胞壁中存在CaM,随后我室一系列工作,包括从小麦细胞壁中纯化CaM、用金标免疫电子显微镜从玉米根尖细胞壁中检测到CaM,以及从悬浮培养的白芷和胡萝卜胞培养介质中检测到CaM,证实了植物细胞外CaM存在的普遍性。另外,我室近年来还发现细胞外CaM可以促进白芷细胞增值、原生质体壁再生及第一次分裂,并且还在白芷和胡萝卜细胞外检测到了CaM结合蛋白(CaMBPs),并将其中主要的分子量为21 ku的CaMBP纯化。上述结果表明植物细胞外不仅存在CaM,而且细胞外CaM还具有生物学功能。  相似文献   

4.
随着基因时代的到来,科学家渐渐认为人的很我行为皆有基因的因素,并且影响着我们的人生与命运,于是就有了“第二次命运”的说法。科学家最新发现了几种基因,它们决定了我们的“第二命运”——  相似文献   

5.
小麦细胞壁钙调素的研究初报   总被引:7,自引:2,他引:5  
叶正华 《科学通报》1988,33(8):624-624
在植物细胞内钙离子作为第二信使通过钙调素(Calmodulin,简称CaM)而起调节作用,已有许多研究证实和评述。植物体内大部分的Ca~(2+)是存在于细胞壁中,Ca~(2+)和细胞壁的相互作用发挥着重要的生理功能,如细胞壁结构的稳定性,酸性生长,离子交换特性,向地性,细胞壁酶活性的调节等。在植物细胞壁中Ca~(2+)的功能是否通过CaM起调节作用,目  相似文献   

6.
创立了一项称为L.B.技术(Longevity Bud Technique)的新的细胞工程技术。这项技术是用化学物理方法促使染色质和细胞质从细胞壁的一处或几处、以不同的质和量通过扩大了的细胞间通道‘穿入’或通过密集的小的胞间通道‘渗入’相邻细胞,实现植物细胞对外源遗传物质或基因群的导入。它们的前导是细胞膜首先‘鼓入’相邻细胞,由于鼓入的细胞膜解体而使染色质和细胞质‘释入’相邻细胞。这项技术包括亲本胚性细胞团的诱导、分离和纯化;不同亲本胚性细胞的离散、组合、离心培养和新建细胞联结;新建胞间联结的两亲本胚性细胞团的增殖培养、活性K~+溶液处理和强化离心穿壁:选择培养系统的建立和植株分化以及杂种的鉴定等操作程序。采用这项技术,我们实现了烟草和菠菜、半夏和灰藜、胡萝卜和石刁柏、半夏和豇豆、胡萝卜和当归、石刁柏和当归、烟草和当归、半夏和胡萝卜、菠菜和当归、半夏和当归、半夏和美国莲花白等多种组合的细胞间染色质和细胞质的穿壁转移,再生了烟草+菠菜等科间杂交植株。经形态学,细胞学,遗传学,细胞分裂周期,代谢途径、植物化学和同功酶等研究表明,这项技术可以实现植物细胞对外源遗传物质的导入并使植物科间远缘杂交成为可能。由于它的普遍适用性和有效性,从而使这项技术成为植物细胞导入外源遗传物质或基因群的一项新的细胞工程技术。这项技术的创立为细胞生物学多方面的研究和广泛的应用前景提供了新的实验体系和理论依据。  相似文献   

7.
再生不仅赋予植物修复受损组织的能力,更能使植物产生新器官,实现营养繁殖.再生能力是植物在严酷环境下能够生存的重要手段,也被广泛应用于生产实践中.组织培养、扦插和嫁接等都是基于植物再生能力而开发的农业技术.再生现象的本质是细胞在受伤或胁迫的环境下命运发生转变的过程.近年来,植物再生领域的研究取得了一系列突破性进展,不仅对植物再生过程中细胞命运转变的谱系有了初步认识,而且探讨了植物细胞高度可塑性的分子机制.伤口或胁迫信号、激素、转录因子和表观遗传途径因子形成有序协作的调控通路,控制着再生过程.本文将总结种子植物中器官从头发生和体细胞胚发生这两种再生方式的研究进展,以期为从事植物再生研究的工作者提供参考.  相似文献   

8.
精子和卵子的结合启动了胚胎发育,其一系列变化过程中最引人注目的是:①卵母细胞结构与卵裂球命运间的关系;②卵裂球获得定位或修饰中细胞遗传及相互作用的重要性;③胚胎细胞中迟早出现决定状态的性质。胚胎发育是基因选择性的按一定的时-空顺序模式表达的过程,某个基因在特定阶段的表达和在表达时间上的相对稳定性对发育中的相应细胞生长分化起着非常关键的作用^[1,2],基因表达的变化决定着整个生命过程。  相似文献   

9.
利用焦锑酸钾沉淀法研究了辣椒叶片导管分子程序化死亡(PCD)过程中Ca2+分布的变化.在导管分子形成初期,液泡和细胞核占据细胞的大部分体积,Ca2+主要分布在细胞间隙和细胞壁上;当壁次生加厚开始后,液泡、细胞核与其他细胞器解体,细胞内Ca2+明显增多;细胞质进一步解体,Ca2+在未进行次生加厚的细胞壁上明显增多,而次生加厚带上非常少;随着细胞质更进一步的消失,Ca2+主要分布于未次生加厚的细胞壁侧,次生加厚带上仍然非常少;在细胞内物质彻底消失后,Ca2+在次生加厚带部位上分布增加,而在未次生加厚的壁上减少.观察结果表明:在导管分子PCD的初期、细胞壁次生加厚期和成熟期,Ca2+的分布发生时空变化,可能表明它对细胞壁次生加厚具有调节和提高 Ca2+运输效率的作用.  相似文献   

10.
《科学通报》2007,52(18):2220-2220
棉花纤维是胚珠外珠被表皮细胞经突起和伸长而成的单细胞,具有极度伸长的结构(长径比达1000~3000)和特殊的细胞壁(纤维素含量达95%)组成,是研究植物细胞  相似文献   

11.
小麦叶绿体中细胞分裂素的结合蛋白   总被引:5,自引:0,他引:5  
黄海 《科学通报》1987,32(6):458-458
在激素作用机理的研究中,激素受体的鉴别和定位是一个重要的研究内容,自从1970年发现高等植物的核糖体存在着细胞分裂素(CTK)的结合蛋白之后,陆续在一些植物的不同细胞组份中发现了这种结合蛋白。但是,CTK是否能与植物细胞的某一细胞器结合还未见报道,黄卓辉与魏家绵曾报道过6-苄氨基嘌呤(6BA)能使离体叶绿体的光合磷酸化活性增强。这使我们对CTK是否能与叶绿体结合,从而调节光合作用或代谢过程产生兴  相似文献   

12.
细胞壁连接的类受体激酶(WAK)是一类特殊的植物类受体激酶, 与细胞壁中的果胶共价交联. 在结构上, WAK分为胞外域、跨膜域和胞内激酶结构域, 胞外域中存在保守的EGF重复序列. WAK以多基因家族形成存在, 其表达模式具有组织特异性, 主要在叶、茎中表达, 在功能上参与病原菌反应、细胞伸长调控、铝胁迫反应等. WAK1在细胞外与富含甘氨酸的蛋白质AtGRP3特异结合, 在胞内与蛋白磷酸酶KAPP结合并形成约500 kD的AtGRP3-WAK1-KAPP复合体. 植物中还存在与WAK结构相似的类WAK蛋白(WAKL)家族. 本文结合WAK结构特点和作用机制认为WAK/WAKL可能是植物细胞壁与细胞质进行联系和通讯的重要蛋白.  相似文献   

13.
随着基因时代的到来,科学家渐渐认为人的很多行为皆有基因的因素,并且影响着我们的人生与命运,于是就有了“第二命运”的说法。科学家最新发现了几种基因.它们决定了我们的“第二命运”——  相似文献   

14.
当T_4病毒(甲状腺病毒)侵入细菌细胞壁后,它就可以在细胞内进行复制。利用一种被称为溶菌酶的酶,就可以使得病毒打开这种由聚糖肽形成的壁——一种隔离糖与蛋白质分子的“篱笆”。为了实现这一功能,必须使溶菌酶的“嘴”或活性部位接近糖分子。研究工程酶新用途的科学家们报道,在溶菌酶的活性部位上安置一开关就可以达到控制这种酶生理活性的目的。  相似文献   

15.
花粉壁发育研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
朱骏  杨仲南 《自然杂志》2013,35(2):112-117
在被子植物中,花粉壁是雄性配子体表面包裹的一层致密物质,在抵御各种环境压力或微生物的侵袭,以及授粉时细胞的识别等方面具有重要作用。花粉壁由花粉内壁和花粉外壁所组成,其中外壁又分为外壁外层和外壁内层。花粉外壁的物质直接来源于绒毡层细胞,外壁的沉积模式是由初生外壁决定,而花粉内壁由小孢子自身控制。近年来在模式植物拟南芥中,人们克隆了许多与花粉外壁形成相关的基因,这些基因的突变往往会导致植株雄性不育的表型。这些基因涉及到绒毡层发育的调控,孢粉素的生物合成与运输,以及胼胝质壁和初生外壁的形成。笔者对这些基因的功能与花粉壁发育的关系进行介绍。  相似文献   

16.
封面说明     
正植物细胞壁储藏了绝大部分光合作用产物,是地球上最丰富、但尚未完全开发利用的可再生生物质资源.植物细胞壁主要由纤维素、半纤维素、果胶质和木质素组成,是纤维及其制品、化工和生物能源的原料.认识植物细胞壁合成及其调控,通过生物技术培育可高效转化利用的细胞壁生物质,对充分利用植物细胞壁这一丰富的可再生资源,建立环境  相似文献   

17.
在中国横断山脉的莽莽林海里,生长着千奇百异的植物。其中一种植物种群——红豆杉,最近的命运发生了戏剧性的变化。红豆杉(Taxus Wallichiana Zucc),又称紫杉,是第四纪冰川期遗留下来的古老植物,属红豆杉科红豆杉属。它广泛分布于北温带温冷山区。1971年,美国药物学家首次从短叶红豆杉的茎皮中分离出一种它所特有的有机物——紫杉醇。  相似文献   

18.
当代植物胚胎学的主要任务在于揭示植物有性生殖过程——植物生殖细胞的产生、受精作用以及胚胎发育的基本规律.而植物生殖过程中的复杂问题,必将促使这门学科不断应用各种新的方法和技术来逐步解决.近年来,研究植物生殖的细胞生物学就是植物胚胎学与细胞生物学相互渗透和结合的产物,被认为是一个新的学科生长点.定量细胞学(Quantitative cytology)研究则是这个新的生长点上一个正在迅速发展的方向. 定量细胞学是应用电子计算机技术和数理方法通过对生物细胞的空间形态以及特征参数进行定量分析,从而揭示其结构与功能之间相互关系的一门边缘学科.随着细胞超微结构研  相似文献   

19.
导管分子程序化死亡过程中Ca2+的时空变化   总被引:3,自引:0,他引:3  
张宗申  利容千  王建波 《科学通报》2001,46(13):1098-1100
利用焦锑酸钾沉淀法研究了辣椒叶片导管分子程序化死亡(PCD)过程中Ca^2 分布的变化。在导管分子形成初期,液泡和细胞核占据细胞的大部分体积,Ca^2 主要分布在细胞间隙和细胞壁上;当壁次生加厚开始后,液泡、细胞核与其他细胞器解体,细胞内Ca^2 明显增多;细胞质进一步解体,Ca^2 在未进行次生加厚的细胞壁上明显增多,而次生加厚带上非常少;随着细胞质更进一步的消失,Ca^2 主要分布于未次生加厚的细胞壁侧,次生加厚带上仍然非常少;在细胞内物质彻底消失后,Ca^2 在次生加厚带部位上分布增加,而在未次生加厚的壁上减少。观察结果表明,在导管分子PCD的初期、细胞壁次生加厚期和成熟期,Ca^2 的分布发生时空变化,可能表明它对细胞壁次生加厚具有调节和提高Ca^2 运输效率的作用。  相似文献   

20.
徐茂军  董菊芳 《科学通报》2006,51(14):1675-1682
一氧化氮(NO)和活性氧(ROS)是植物体内两种常见的信号分子, 在植物抗逆反应等过程中起重要作用. NO合成和氧化迸发(oxidative burst)以及ROS积累是红豆杉悬浮细胞在桔青霉细胞壁诱导子处理下出现的两个早期反应. 为了探讨NO和ROS在桔青霉细胞壁诱导子促进红豆杉细胞紫杉醇合成过程中的作用及其相互关系, 分别以NO专一性淬灭剂cPITO, 一氧化氮合酶(NOS)抑制剂PBITU, 质膜NAD(P)H氧化酶抑制剂DPI以及超氧离子(O2-)和过氧化氢(H2O2)淬灭剂超氧化物歧化酶(SOD)及过氧化氢酶(CAT)处理红豆杉细胞. 结果表明, cPITO和DPI不仅可以分别抑制红豆杉细胞的NO合成和ROS积累, 同时还可以阻断诱导子对紫杉醇合成的促进作用, 说明NO和ROS是参与桔青霉细胞壁诱导子促进红豆杉细胞中紫杉醇合成调控的信号分子. cPITO和PBITU同时还可以部分抑制诱导子对红豆杉细胞氧化迸发的诱发作用. 外源NO单独处理可以促进红豆杉细胞中紫杉醇合成, DPI可以抑制NO对紫杉醇合成促进作用. 然而, 即使在红豆杉细胞中ROS积累被完全抑制的情况下, NO和桔青霉细胞壁诱导子对细胞中紫杉醇的合成仍然具有一定的促进作用. 上述结果表明, NO可以通过依赖和不依赖ROS的两类不同信号途径介导真菌诱导子诱发红豆杉细胞中紫杉醇的生物合成. 实验结果同时也表明, NO和桔青霉细胞壁诱导子对红豆杉细胞中紫杉醇合成的促进作用可以被CAT抑制, 但不受SOD的影响, 说明氧化迸发产生的H2O2可能是介导NO和桔青霉细胞壁诱导子诱发紫杉醇合成的信号分子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号