共查询到20条相似文献,搜索用时 104 毫秒
1.
函数项级数的一致收敛性对于求极限、导数等都有重要的意义,为了更好地理解和掌握函数项级数一致收敛的方法,对函数项级数一致收敛的几种判别法进行了分析、归纳和总结。首先引言部分列举了大家熟知的几种基本判别法,然后对基本判别法作了进一步讨论。 相似文献
2.
函数项级数一致收敛的判别法 总被引:1,自引:0,他引:1
金玮 《甘肃联合大学学报(自然科学版)》2009,23(5):110-114
给出了判断函数项级数一致收敛的多种方法,并对每种新方法给予严格证明,内容丰富,方法多样,以利于对函数项级数一致收敛的深入了解和更为广泛的应用. 相似文献
3.
4.
在数值级数的收敛判别法中,正项级数的积分判别法解决了一类正项级数与无穷积分的收敛判别问题,在此基础上,本文进一步研究函数项级数一致收敛的积分判别法,并以此解决一类函数项级数与含参变量无穷积分的一致收敛判别问题。 相似文献
5.
李长春 《齐齐哈尔师范学院学报(自然科学版)》1996,16(1):12-13
本文给Leibniz型函数项级数,并且应用Dini定理及Dirichlet定理证明是一致收敛的,它可作为Dirichlet定理的推广,是差别函数项级数一致收敛性的又一行这有效的新方法。 相似文献
6.
陈治友 《贵州大学学报(自然科学版)》1996,13(4):243-247
本文阐明的关于函数级数一致收敛的判别法,我们知道,当我们取消阿贝尔判别法中函数列的单调性后,阿贝尔判别法是难以成立的,但当我们给出函数列与函数和仍然一致收敛,最后通过对一个例题的讨论说明本文所述的判虽法与文中的三咱判别法之异同。 相似文献
7.
本文从数项级数的判敛法则出发,导出了几个函数项级数的一致收敛判别法。另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法。 相似文献
8.
介绍函数项级数一致收敛的相关概念及几种判别法,并且进一步对以往教材中没有提到的关于函数项级数一致收敛判别法的充要条件给出了相应的详细证明,最后给出典型例题对几种判别法简单应用。 相似文献
9.
10.
《四川理工学院学报(自然科学版)》2017,(5):74-78
考虑函数项级数和含参变量广义积分的一致收敛性的判别问题,经典的柯西准则判别法是证明函数项级数和含参变量广义积分一致收敛的有效方法,然而应用柯西准则判别函数项级数和含参变量广义积分非一致收敛时,对每一个问题都要给出各自具体细致的操作过程,相当的繁琐,没有形成系统的理论方法。经过对经典的柯西准则的表述方式给予改进,利用改进表述的柯西准则,给出了函数项级数和含参变量广义积分的非一致收敛性的一般性方法,叙述简便,通过实例说明改进的柯西准则的表述方法的技术指引性和对在具体问题使用中的简洁性,容易掌握并有利于传播。 相似文献
11.
以问题为中心进行探索式教学是当今数学教研改革的重点,本文以函数项级数的一致收敛概念的教学设计为例探讨了以问题为中心进行教学的实践,结果表明这是一种很好的教学模式。 相似文献
12.
Fuzzy区间值函数项级数及其一致收敛性 总被引:2,自引:0,他引:2
郭志林 《广西右江民族师专学报》2005,18(6):9-12
文章在已知Fuzzy函数项级数一致收敛概念的基础上,补充了区间值函数项级数一致收敛的概念和判别方法,给出了一致收敛性的区间值函数项级数的分析性质。 相似文献
13.
杨香凤 《东华大学学报(自然科学版)》2006,32(3):48-51
基于Fourier级数的逐点收敛性已经有很全面的研究,如Dini判别法、Lipsehitz判别法、Dirichlet-Jordan判别法等,而关于Fourier级数的一致收敛性在文献中很少提及,本文将讨论Fourier级数的一致收敛性的几个判别方法。 相似文献
14.
15.
级数是产生新函数的重要方法,是研究函数的重要工具,是分析学的重要组成部分.随着级数理论的完善与发展,人们逐渐发现,函数项级数和函数的连续性这一分析性质非常重要而且应用十分广泛.一致收敛正是为了深入研究和函数的分析性质而引入的,然而在教学中我们发现,一致收敛性是很苛刻的,它只是保证和函数拥有良好分析性质的充分条件,但不是必要条件.事实上,保证和函数拥有连续性质的条件还可以适当减弱,本文正是从这一点出发,探索出了保证函数项级数的和函数连续性的弱化条件. 相似文献
16.
17.
在一维的情况下,Sato给出了一个Fourier余项S_n(f)-f的一致估计,从而可得出某些S_n(f)的一致收敛的相应的判别条件。本文把这种一致估计推广到多维情形。 相似文献
18.
李勇 《重庆文理学院学报(自然科学版)》2006,5(2):43-45
论述了函数序列和函数项级数一致收敛的概念和相关定理,并进一步给出了以往教材中没有提到的关于判别函数项级数一致收敛的一个有效充要判别法. 相似文献
19.
等截面曲梁的传递函数方法 总被引:1,自引:0,他引:1
对将传递函数方法运用于曲梁的变形计算进行了研究。建立弧坐标,并定义状态向量,将曲梁变形控制方程和边界条件写成状态空间形式,其中轴力和弯矩都是方程中的参数。文中给出了数值算例并与精确解进行了对比。 相似文献
20.